接合方法、接合体、液滴喷出头及液滴喷出装置.pdf

上传人:大师****2 文档编号:1222016 上传时间:2018-04-07 格式:PDF 页数:41 大小:1.98MB
返回 下载 相关 举报
摘要
申请专利号:

CN200880020534.3

申请日:

2008.06.16

公开号:

CN101688083A

公开日:

2010.03.31

当前法律状态:

撤回

有效性:

无权

法律详情:

发明专利申请公布后的视为撤回IPC(主分类):C09J 5/02申请公布日:20100331|||实质审查的生效IPC(主分类):C09J 5/02申请日:20080616|||公开

IPC分类号:

C09J5/02; B32B9/00; B41J2/16

主分类号:

C09J5/02

申请人:

精工爱普生株式会社

发明人:

松尾泰秀

地址:

日本东京

优先权:

2007.6.18 JP 160797/2007; 2008.6.2 JP 145158/2008

专利代理机构:

中科专利商标代理有限责任公司

代理人:

李贵亮

PDF下载: PDF下载
内容摘要

本发明的接合方法包括:在第一基材的表面上形成等离子体聚合膜,得到第一粘附体的第一工序;向等离子体聚合膜的表面照射紫外光,活化表面的第二工序;准备至少在供给于与第一粘附体的接合的面不具备等离子体聚合膜的第二粘附体(第二基材),使该第二粘附体和活化的等离子体聚合膜的表面接触地贴合第一粘附体和第二粘附体,得到接合体的第三工序。

权利要求书

1.  一种接合方法,其特征在于,包括:
第一工序,其中,准备在基材上具备等离子体聚合膜的第一粘附体;
第二工序,其中,向所述等离子体聚合膜的表面赋予能量,使所述等离子体聚合膜的表面活化;
第三工序,其中,准备至少在与所述第一粘附体接合的面不具备等离子体聚合膜的第二粘附体,并以使所述已活化的等离子体聚合膜的表面与所述第二粘附体密接的方式贴合所述第一粘附体和所述第二粘附体,从而得到接合体。

2.
  根据权利要求1所述的接合方法,其中,
所述第二粘附体的表面存在羟基及所述第二粘附体中的结合被切断而成的活性的结合键的至少一种,
在所述第三工序中,使所述等离子体聚合膜与所述第二粘附体的所述表面密接。

3.
  根据权利要求2所述的接合方法,其中,
所述第二粘附体的表面被氧化膜覆盖。

4.
  根据权利要求1所述的接合方法,其中,
所述等离子体聚合膜是以聚有机硅氧烷或有机金属聚合物为主材料构成的。

5.
  根据权利要求4所述的接合方法,其中,
所述聚有机硅氧烷以八甲基三硅氧烷的聚合物为主成分。

6.
  根据权利要求4所述的接合方法,其中,
所述聚有机硅氧烷包含Si-H键。

7.
  根据权利要求6所述的接合方法,其中,
在所述包含Si-H键的聚有机硅氧烷的红外光吸收光谱中,将归属于硅氧烷键的峰强度设为1时,归属于Si-H键的峰强度为0.001~0.2。

8.
  根据权利要求4所述的接合方法,其中,
在所述聚有机硅氧烷的红外光吸收光谱中,归属于硅氧烷键的峰强度设为1时,归属于甲基的峰强度为0.05~0.45。

9.
  根据权利要求4所述的接合方法,其中,
所述有机金属聚合物以三甲基镓或三甲基铝的聚合物为主成分。

10.
  根据权利要求1所述的接合方法,其中,
所述等离子体聚合膜的平均厚度为10~10000nm。

11.
  根据权利要求1所述的接合方法,其中,
在所述第二工序后,向所述等离子体聚合膜的表面照射能量射线。

12.
  根据权利要求11所述的接合方法,其中,
所述光为波长150~300nm的紫外光。

13.
  根据权利要求1所述的接合方法,其中,
在大气气氛中进行所述第二工序。

14.
  根据权利要求1所述的接合方法,其中,
在所述第三工序后,具有对所述接合体实施热处理的工序。

15.
  根据权利要求14所述的接合方法,其中,
所述热处理的温度为25~100℃。

16.
  根据权利要求1所述的接合方法,其中,
在所述第三工序后,具有对所述接合体加压的工序。

17.
  根据权利要求16所述的接合方法,其中,
对所述接合体加压时的压力为1~10MPa。

18.
  根据权利要求1所述的接合方法,其中,
在所述第二工序结束后,在60分钟内开始所述第三工序。

19.
  根据权利要求1所述的接合方法,其中,
所述第一粘附体是预先在所述第一基材上实施利用等离子体的衬底处理后,在实施了该衬底处理的区域形成所述等离子体聚合膜而成的。

20.
  一种接合体,其特征在于,具有:
第一基材及第二基材,以及
等离子体聚合膜;其中,
所述第一基材和所述第二基材经由在所述第一基材上设置的所述等离子体聚合膜接合。

21.
  一种液滴喷出头,其特征在于,具备:
权利要求20所述的接合体。

22.
  一种液滴喷出装置,其特征在于,具备:
权利要求21所述的液滴喷出头。

说明书

接合方法、接合体、液滴喷出头及液滴喷出装置
技术领域
本发明涉及接合方法、接合体、液滴喷出头及液滴喷出装置。
背景技术
以往,在接合(粘接)两个部件(基材)之间时,多使用应用环氧系粘接剂、尿烷系粘接剂、硅酮系粘接剂等粘接剂来进行的方法。
粘接剂可以不取决于部件的材质而显示粘接性。因此,可以将包括各种材料的部件之间以各种组合来粘接。
例如,喷墨打印机具备的液滴喷出头(喷墨式记录头)通过使用粘接剂粘接由树脂材料、金属材料、硅系材料等异种材料构成的部件之间而构成。
在这样使用粘接剂粘接部件之间时,将液态或糊剂状粘接剂涂敷于粘接面,经由涂敷的粘接剂,贴合部件之间。然后,若通过热量或光的作用,使粘接剂固化,则部件之间基于锚定效果之类的物理相互作用、或化学键之类的化学相互作用来粘接。
可是,在部件的粘接面涂敷粘接剂时,需要使用印刷法等烦杂的方法。另外,涂敷的粘接剂的厚度受到粘接剂的粘度、气温、湿度、印刷装置的条件等大量的参数的影响,因此,极其难以严格控制。因此,存在不能充分地提高接合体的尺寸精度的问题。其结果,使用粘接剂制造如所述液滴喷出头一样,要求高的尺寸精度的结构物的情况下,液滴喷出头的尺寸精度降低,可能引起对打印机的印字结果产生坏影响等问题。
另外,粘接剂的固化时间非常长,因此,还存在粘接需要长时间的问题。
进而,在大部分的情况下,为了提高粘接强度,需要使用预聚物,用于此的成本和劳力和时间导致粘接工序复杂化。
另一方面,作为不使用粘接剂的接合方法,有利用固体接合的方法。
固体接合是不间介粘接剂等中间层,直接接合部件之间的方法(例如,参照专利文献1)。
根据这样的固体接合可知,不使用粘接剂之类的中间层,因此,能够得到尺寸精度高的接合体。
然而,存在部件的材质受到限制的问题。具体来说,通常,固体接合只能进行同种材料之间的接合。另外,能够接合的材料限于硅系材料或一部分金属材料等。
另外,由于进行固体接合的气氛限于减压气氛,还存在需要高温(700~800℃左右)的热处理等接合工序中的问题。
受到这样的问题,正在寻求将两个部件之间以高的尺寸精度牢固地且效率良好地接合的方法。
专利文献1:特开平5-82404号公报
发明内容
本发明的目的在于提供能够将两个部件之间以高的尺寸精度牢固地且效率良好地接合的接合方法、以高的尺寸精度牢固地接合两个部件之间而成的接合体、具备所述接合体的可靠性高的液滴喷出头、及具备所述液滴喷出头的液滴喷出装置。
为了实现所述目的,本发明是一种接合方法,其特征在于,包括:
第一工序,其中,准备在基材上具备等离子体聚合膜的第一粘附体;
第二工序,其中,向所述等离子体聚合膜的表面赋予能量,使所述等离子体聚合膜的表面活化;
第三工序,其中,准备至少在与所述第一粘附体接合的面不具备等离子体聚合膜的第二粘附体,并以使所述已活化的等离子体聚合膜的表面与所述第二粘附体密接的方式贴合所述第一粘附体和所述第二粘附体,从而得到接合体。
根据这样的本发明可知,能够将两个部件之间以高的尺寸精度牢固地且效率良好地接合。
另外,优选在本发明的接合方法中,所述第二粘附体在其表面存在有羟基及所述第二粘附体中的结合被切断而成的活性的结合键的至少一种,
在所述第三工序中,使所述等离子体聚合膜、和所述第二粘附体的所述表面密接。
由此,第二粘附体和等离子体聚合膜的接合强度提高,能够更牢固地接合两个粘附体。
另外,优选在本发明的接合方法中,所述第二粘附体的表面被氧化膜覆盖。
由此,即使不实施羟基与第二粘附体的表面结合的处理,也能够更牢固地接合两个粘附体。
另外,优选在本发明的接合方法中,所述等离子体聚合膜以聚有机硅氧烷或有机金属聚合物为主材料构成。
由此,能够更牢固地接合第一粘附体和第二粘附体。
另外,优选在本发明的接合方法中,所述聚有机硅氧烷以八甲基三硅氧烷的聚合物为主成分。
由此,得到粘接性优越的等离子体聚合膜。
另外,优选在本发明的接合方法中,所述聚有机硅氧烷包含Si-H键。
认为Si-H键阻碍硅氧烷键的生成有序地进行的情况。因此,硅氧烷键避开Si-H键地形成,聚有机硅氧烷中的Si骨架的有序性降低。其结果,以聚有机硅氧烷为主材料的等离子体聚合膜的结晶性降低,接合强度、耐药品性及尺寸精度高。
另外,优选在本发明的接合方法中,在所述包含Si-H键的聚有机硅氧烷的红外光吸收光谱中,将归属于硅氧烷键的峰强度设为1时,归属于Si-H键的峰强度为0.001~0.2。
由此,利用硅氧烷键构成等离子体聚合膜中的骨架部分,由此能够高度地同时实现膜强度变高的作用、和利用Si-H键的聚有机硅氧烷的结晶性降低的作用。其结果,等离子体聚合膜在接合强度、耐药品性及尺寸精度上尤其优越。
另外,优选在本发明的接合方法中,在聚有机硅氧烷的红外光吸收光谱中,归属于硅氧烷键的峰强度设为1时,归属于甲基的峰强度为0.05~0.45。
由此,防止甲基以必要以上阻碍硅氧烷键的生成的情况,同时,在聚有机硅氧烷中产生必要且充分的数量的活性键,因此,在等离子体聚合膜产生充分的粘接性。另外,在等离子体聚合膜显示甲基引起的充分的耐气候性及耐药品性。
另外,优选在本发明的接合方法中,所述有机金属聚合物以三甲基镓或三甲基铝的聚合物为主成分。
由此,尤其能够牢固地接合第一粘附体和第二粘附体,并且,能够向等离子体聚合膜赋予导电性。
另外,优选在本发明的接合方法中,所述等离子体聚合膜的平均厚度为10~10000nm。
由此,能够防止接合了第一粘附体和第二粘附体的接合体的尺寸精度显著降低的情况,同时,能够更牢固地接合。
另外,优选在本发明的接合方法中,在所述第二工序后,向所述等离子体聚合膜的表面照射能量射线。
由此,能够效率良好地活化等离子体聚合膜的表面。另外,不以必要以上切断等离子体聚合膜中的结构,因此,能够避免等离子体聚合膜的特性降低。
另外,优选在本发明的接合方法中,所述光为波长150~300nm的紫外光。
由此,能够防止等离子体聚合膜的特性的显著的降低,同时,能够将宽的范围没有不均地在更短时间内处理。因此,能够效率良好地进行等离子体聚合膜的表面的活化。
另外,优选在本发明的接合方法中,在大气气氛中进行所述能量射线的照射。
由此,不需要在控制气氛时花费劳力和时间或成本,能够更简单地进行活化处理。
另外,优选在本发明的接合方法中,在所述第三工序后,具有对所述接合体实施热处理的工序。
由此,能够进一步提高接合体中的接合强度。
另外,优选在本发明的接合方法中,所述热处理的温度为25~100℃。
由此能够可靠地防止接合体由于热量而变质·劣化的情况,同时,能够可靠地提高接合强度。
另外,优选在本发明的接合方法中,在所述第三工序后,具有对所述接合体加压的工序。
由此,能够进一步提高接合体中的接合强度。
另外,优选在本发明的接合方法中,对所述接合体加压时的压力为1~10MPa。
由此,对基材不发生损伤等,能够可靠地提高接合体的接合强度。
另外,优选在本发明的接合方法中,在所述第二工序的结束后,在60分钟内开始所述第三工序。
由此,能够将等离子体聚合膜的表面维持为充分的活性状态,在贴合时能够得到充分的接合强度。
另外,优选在本发明的接合方法中,所述第一粘附体是预先在所述第一基材上实施了利用等离子体的衬底处理后,在实施了该衬底处理的区域形成所述等离子体聚合膜而成的。
由此,清洁化及活化基材的接合面,在接合面上形成了等离子体聚合膜时,能够提高接合面和等离子体聚合膜的接合强度。
为了实现所述目的,本发明是一种接合体,其特征在于,具有:
第一基材及第二基材,以及
等离子体聚合膜;其中
所述第一基材和所述第二基材经由在所述第一基材上设置的所述等离子体聚合膜接合。
根据这样的本发明可知,得到将两个部件之间以高的尺寸精度牢固地接合而成的接合体。
为了实现所述目的,本发明是一种液滴喷出头,其特征在于,具备:
本发明的接合体。
根据这样的本发明可知,得到可靠性高的液滴喷出装置。
为了实现所述目的,本发明是一种液滴喷出装置,其特征在于,具备:
本发明的液滴喷出头。
根据这样的本发明可知,得到可靠性高的液滴喷出装置。
附图说明
图1是表示在本发明的接合方法中使用的等离子体聚合装置的纵向剖面图。
图2是用于说明本发明的接合方法的图(纵向剖面图)。
图3是用于说明本发明的接合方法的图(纵向剖面图)。
图4是表示适用本发明的接合体得到的喷墨式记录头(液滴喷出头)的分解立体图。
图5是表示图4所示的喷墨式记录头的主要部分的结构的剖面图。
图6是表示具备图4所示的喷墨式记录头的喷墨打印机的实施方式的概略图。
具体实施方式
以下,基于附图所示的适当实施方式,详细说明本发明的接合方法、接合体、液滴喷出头及液滴喷出装置。
<接合方法>
本发明的接合方法为将两个基材(第一基材21及第二基材22)经由等离子体聚合膜3接合的方法。根据所述方法可知,能够将两个基材21、22以高的尺寸精度牢固地且效率良好地接合。
在此,在说明本发明的接合方法之前,首先,说明在形成所述等离子体聚合膜时使用的等离子体聚合装置。
图1是以示意性表示在本发明的接合方法中使用的等离子体聚合装置的纵向剖面图。还有,在以下的说明中,将图1中的上侧称为“上”,将下侧称为“下”。
图1所示的等离子体聚合装置100具备:腔室101;支撑第一基材21的第一电极130;第二电极140;向各电极130、140之间施加高频电压的电源回路180;向腔室101内供给气体的气体供给部190;排出腔室101内的气体的排气泵170。这些各部中第一电极130及第二电极140设置于腔室101内。以下,详细说明各部。
腔室101为能够保持内部的气密的容器,将内部形成为减压(真空)状态而使用,因此,使其具有能够经得住内部和外部的压差的耐压性能。
图1所示的腔室101包括:轴线沿水平方向配置的呈大致圆筒形的腔室主体;密封腔室主体的左侧开口部的圆形的侧壁;密封右侧开口部的圆形的侧壁。
在腔室101的上方设置有供给口103,在下方设置有排气口104。还有,在供给口103连接有气体供给部190,在排气口104连接有排气泵170。
还有,在本实施方式中,腔室101包括导电性高的金属材料,经由接地线102电连接接地。
供给口130呈板状,支撑第一基材21。
该第一电极130在腔室101的侧壁的内壁面沿铅垂方向设置,由此,第一电极130经由腔室101电连接接地。还有,第一电极130如图1所示,设置为与腔室主体同心状。
在第一电极130的支撑第一基材21的面设置有静电卡盘(吸附机构)139。
利用该静电卡盘139,如图1所示,能够沿铅垂方向支撑第一基材21。另外,即使在第一基材21存在少量的翘起,也能够通过吸附于静电卡盘139,以矫正了所述翘起的状态将第一基材21供给于等离子体处理。
第二电极140经由第一基材21与第一电极130对置而设置。还有,第二电极140以从腔室101的侧壁的内壁面远离(被绝缘)的状态设置。
在该第二电极140经由配线184连接有高频电源182。另外,在配线184的中途设置有匹配盒183(耦合器)。利用这些配线184、高频电源182及匹配盒183,构成电源回路180。
根据这样的电源回路180可知,第一电极130接地,因此,向第一电极130和第二电极140之间施加高频电压。由此,在第一电极130和第二电极140的间隙之间感应高的频率且朝向反转的电场。
气体供给部190向腔室101内供给规定的气体。
图1所示的气体供给部190具有:贮存液态的膜材料(原料液)的液体贮存部191;将液态的膜材料气化,使其变化为气体状的气化装置192;贮存载体气体的气体容器193。另外,这些各部和腔室101的供给口103分别由配管194连接,将气态膜材料(原料气体)和载体气体的混合气体从供给口103向腔室101内供给。
在液体贮存部191贮存的液态膜材料通过等离子体聚合装置100,聚合而成为在第一基材21的表面形成聚合膜的原材料。
这样的液态膜材料利用气化装置192气化,成为气态的膜材料(原料气体),供给于腔室101内。还有,关于原料气体,在后详述。
在气体容器193贮存的载体气体是通过电场的作用来放电,且为了维持该放电而导入的气体。作为这样的载体气体,例如,可以举出Ar气体、He气体等。
另外,在腔室101内的供给口103的附近设置有扩散板195。
扩散板195具有:促进向腔室101内供给的混合气体的扩散。由此,混合气体可以在腔室101内以大致均一的浓度分散。
排气泵170将腔室101内排气,例如,由油旋转泵、涡轮分子泵等。这样,通过将腔室101内排气而减压,能够容易地等离子体化气体。另外,能够防止与大气气氛的接触引起的第一基材21的污染·氧化等,并且,能够从腔室101内有效地除去等离子体处理引起的反应产物。
另外,在排气口104设置有调节腔室101内的压力的压力控制机构171。由此,根据气体供给部190的工作状况,适当地设定腔室101内的压力。
其次,关于本发明的接合方法的实施方式,将使用了上述等离子体聚合装置100的情况作为例子来进行说明。
图2及图3是用于说明本发明的接合方法的图(纵向剖面图)。还有,在以下的说明中,将图2及图3中的上侧称为“上”,将下侧称为“下”。
本实施方式的接合方法具有:准备第一基材21,在第一基材21的表面上形成等离子体聚合膜3的工序(第一工序);对等离子体聚合膜3的表面赋予能量,使该表面活化的工序(第二工序);准备至少在与等离子体聚合膜3接合的面不具备等离子体聚合膜的第二基材22,使该第二基材22和活化的等离子体聚合膜3的表面接触地贴合第一基材21和第二基材22,得到接合体的工序(第三工序);加热接合体的同时加压的工序。
即,在本发明的接合方法中,供给于接合的第一粘附体具有:第一基材21;在第一基材21上设置的等离子体聚合膜3,供给于接合的第二粘附体具有第二基材22。
换而言之,在第一基材21的接合面预先设置有等离子体聚合膜3,但在第二基材22的接合面未预先设置有等离子体聚合膜。
以下,依次说明本实施方式的接合方法的各工序。
[1]首先,准备第一基材21。
第一基材21的构成材料不特别限定,但可以举出聚苯硫醚、芳族聚酰胺系树脂、聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯、聚丙烯、环烯烃聚合物、聚酰胺、聚醚砜、聚甲基甲基丙烯酸酯、聚碳酸酯、聚烯丙基酯之类的树脂材料、不锈钢、铝、钽、钛、氧化铟锡(ITO)之类的金属材料、单晶硅、多晶硅、石英玻璃之类的硅系材料、铝之类的陶瓷材料、或组合这些材料的一种或两种以上的复合材料等。
其次,根据需要对第一基材21的接合面23实施衬底处理。由此,将接合面23清洁化及活化。其结果,在后述的工序中,在接合面23形成了等离子体聚合膜3时,能够提高接合面23和等离子体聚合膜3的接合强度。
作为该衬底处理,不特别限定,但例如,可以举出氧等离子体处理、蚀刻处理、电子射线处理、紫外线照射处理等。
还有,实施衬底处理的第一基材21包括树脂材料(高分子材料)的情况下,尤其适合使用电晕放电处理、氮等离子体处理等。
[2]其次,如图2(a)~(c)所示,在第一基材21的接合面23形成等离子体聚合膜3(第一工序)。
所述等离子体聚合膜3可以通过在强电场中,供给原料气体和载体气体的混合气体,将原料气体中的分子聚合而得到。
具体来说,首先,在腔室101内收容第一基材21,形成为密封状态后,通过排气泵170的工作,将腔室101内形成为减压状态。
其次,使气体供给部190工作,向腔室101内供给原料气体和载体气体的混合气体。被供给的混合气体填充于腔室101内(参照图2(a))。
混合气体中的原料气体所占的比例(混合比)根据原料气体或载体气体的种类或作为目的的成膜速度等而略不同,但例如,优选将混合气体中的原料气体的比例设定为20~70%左右,更优选设定为30~60%左右。由此,能够实现聚合膜的形成(成膜)的条件的最佳化。
另外,根据气体的种类或作为目的的成膜速度、膜厚等而适当地确定供给的气体的流量,不特别限定,但通常优选将原料气体及载体气体的流量分别设定为1~100ccm左右,更优选设定为10~60ccm左右。
其次,使电源回路180工作,向一对电极130、140之间施加高频电压。由此,在一对电极130、140之间存在的气体的分子电离,产生等离子体。通过该等离子体的能量,原料气体中的分子聚合,如图2(b)所示,聚合物附着·堆积在第一基材21上。由此,在第一基材21上形成等离子体聚合膜3(参照图2(c))。
作为原料气体,例如,可以举出甲基硅氧烷、八甲基三硅氧烷、十甲基四硅氧烷、十甲基环五硅氧烷、八甲基环四硅氧烷、甲基苯基硅氧烷之类的有机硅氧烷、三甲基镓、三乙基镓、三甲基铝、三乙基铝、三异丁基铝、三甲基铟、三乙基铟、三甲基锌、三乙基锌之类的有机金属系化合物、各种烃系化合物、各种氟系化合物等。
使用这样的原料气体得到的等离子体聚合膜3包括这些原料聚合而成的物质(聚合物)即聚有机硅氧烷、有机金属聚合物、烃系聚合物、氟系聚合物等。
其中,等离子体聚合膜3尤其优选以聚有机硅氧烷或有机金属聚合物为主材料。由此,等离子体聚合膜3能够更牢固地接合第一基材21和第二基材22。
另外,其中,聚有机硅氧烷通常显示疏水性,但通过实施各种活化处理,能够使有机基等脱离基容易地脱离,能够变化为亲水性。即,具有能够容易地进行等离子体聚合膜3的疏水性和亲水性的控制的优点。
另外,包括显示疏水性的聚有机硅氧烷的等离子体聚合膜3在后述的工序中,即使与第二基材接触,也由于在等离子体聚合膜3的表面存在的有机基等脱离基,粘接被阻碍,极其难以粘接。另一方面,包括显示亲水性的聚有机硅氧烷的等离子体聚合膜3在与第二基材接触的情况下,能够进行两者的粘接。即,能够容易地进行疏水性和亲水性的控制的优点与能够容易地进行粘接性的控制的优点息息相关,因此,包括聚有机硅氧烷的等离子体聚合膜3在本发明的接合方法中适当地使用。
另外,聚有机硅氧烷比较富有弹性,因此,例如,在第一基材21和第二基材22的各构成材料相互不同的情况下,也能够缓和伴随在各基材21、22之间产生的热膨胀的应力。由此,在最终得到的接合体1中,能够可靠地防止剥离。
进而,聚有机硅氧烷的耐药品性优越,因此,在长期暴露于药品类等的部件的接合时能够有效地使用。具体来说,例如,在制造使用容易侵蚀树脂材料的有机系墨液的工业用喷墨打印机的液滴喷出头时,通过使用以聚有机硅氧烷为主材料的等离子体聚合膜3,能够提高其耐久性。
另外,在聚有机硅氧烷中,尤其优选以八甲基三硅氧烷的聚合物为主成分。以八甲基三硅氧烷的聚合物为主成分的等离子体聚合膜的粘接性特别优越,因此,在本发明的接合方法中,尤其适合使用。另外,以八甲基三硅氧烷为主成分的原料在常温下呈液态,具有适度的粘度,因此,还具有容易处理的优点。
另外,聚有机硅氧烷优选包含Si-H键。认为在适度地包含该Si-H键的聚有机硅氧烷中,Si-H键阻碍硅氧烷键的生成有序地进行。由此,硅氧烷键避开Si-H键地形成,聚有机硅氧烷中的Si骨架的有序性降低。其结果,以聚有机硅氧烷为主材料的等离子体聚合膜3的结晶性低。
这样的结晶性低的等离子体聚合膜难以发生结晶材料特有的晶界中的转位或偏移等缺陷。因此,等离子体聚合膜3自身成为接合强度、耐药品性及尺寸精度高的膜,在最终得到的接合体中,也得到接合强度、耐药品性及尺寸精度高的接合体。
另一方面,不是聚有机硅氧烷中的Si-H键的含量越多,越提高所述等离子体聚合膜3的特性,而是Si-H键的含量优选在规定的范围内。即,在聚有机硅氧烷的红外光吸收光谱中,归属于硅氧烷键的峰的强度设为1时,归属于Si-H键的峰的强度优选0.001~0.2左右,更优选0.002~0.05左右,进而优选0.005~0.02左右。通过使Si-H键的相对于硅氧烷键的比例为所述范围内,利用硅氧烷键构筑等离子体聚合膜3的骨架部分,由此能够高度地同时实现膜强度变高的作用、和利用Si-H键的聚有机硅氧烷的结晶性降低的作用。其结果,等离子体聚合膜3在接合强度、耐药品性及尺寸精度上尤其优越。
另外,通过对聚有机硅氧烷实施活化处理,从等离子体聚合膜3脱离的所述脱离基从聚有机硅氧烷中的Si骨架脱离,由此在等离子体聚合膜3产生活性键。从而,需要通过对脱离基赋予能量,比较简单且均一地脱离,但在不赋予能量时,与Si骨架可靠地结合以不脱离。
作为这样的脱离基,例如,优选使用选自H原子、B原子、C原子、N原子、O原子、P原子、S原子及卤素系原子、或包含这些各原子且这些各原子与聚有机硅氧烷中的Si骨架结合地配置的原子团中的至少一种。所述脱离基的利用能量的赋予的结合/脱离的选择性比较优越。因此,这样的脱离基能够充分地满足如上所述的必要性,能够使带有接合膜的基材的粘接性变得更高度。
另外,作为如上所述的各原子与聚有机硅氧烷中的Si骨架结合地配置的原子团(基团),例如,可以举出甲基、乙基之类的烷基、乙烯基、烯丙基之类的链烯基、醛基、酮基、羧基、氨基、酰胺基、硝基、卤化烷基、巯基、磺酸基、氰基、异氰酸酯基等。
在这些各基团中,所述有机基尤其优选烷基。烷基的化学稳定性高,因此,包含烷基的等离子体聚合膜3的耐气候性及耐药品性优越。
在此,所述有机基为甲基(-CH3)的情况下,根据红外光吸收光谱中的峰强度,如下所述地规定其优选的含量。
即,在聚有机硅氧烷的红外光吸收光谱中,归属于硅氧烷键的峰的强度设为1时,归属于甲基的峰的强度优选0.05~0.45左右,更优选0.1~0.4左右,进而优选0.2~0.3左右。通过甲基的峰强度相对于硅氧烷键的峰强度的比例在所述范围内,防止甲基以必要以上阻碍硅氧烷键的生成,同时,在聚有机硅氧烷中产生必要且充分的数量的活性键,因此,在等离子体聚合膜3产生充分的粘接性。另外,在等离子体聚合膜3显示甲基引起的充分的耐气候性及耐药品性。
另一方面,有机金属聚合物能够通过经过活化处理,显示优越的导电性,并且,能够更牢固地接合两个基材21、22。从而,包括有机金属聚合物的等离子体聚合膜3通过经过后述的活化处理,能够构成可以作为能够可靠地防止剥离等的可靠性高的配线等的接合体1。
另外,在有机金属聚合物中,也尤其优选以三甲基镓或三甲基铝的聚合物为主成分。这些成分在有机金属聚合物中,也尤其牢固地接合两个基材21、22,并且,通过经过活化处理,能够使等离子体聚合膜显示高的导电性。
在等离子体聚合时,向一对电极130、140之间施加的高频的频率不特别限定,但优选1kHz~100MHz,更优选10~60MHz左右。
另外,高频的输出密度不特别限定,但优选0.01~100W/cm2左右,更优选0.1~50W/cm2左右,进而优选1~40W/cm2左右。通过将高频的输出密度设为所述范围内,能够防止高频的输出密度过高,对原料气体赋予必要以上的等离子体能量的情况,同时,能够可靠地形成等离子体聚合膜3。即,在高频的输出密度小于所述下限值的情况下,不能使原料气体中的分子发生聚合反应,可能不能形成等离子体聚合膜3。另一方面,在高频的输出密度大于所述上限值的情况下,原料气体发生分解等,能够成为脱离基的结构从聚有机硅氧烷中的Si骨架分离,在得到的等离子体聚合膜3中脱离基的含量显著降低,因此,等离子体聚合膜3的接合强度可能降低。
另外,成膜时的腔室101内的压力优选133.3×10-5~1333Pa(1×10-5~10Torr)左右,更优选133.3×10-4~133.3Pa(1×10-4~1Torr)左右。
原料气体流量优选0.5~200sccm左右,更优选1~100sccm左右。另一方面,载体气体流量优选5~750sccm左右,更优选10~500sccm左右。
处理时间优选1~10分钟左右,更优选4~7分钟左右。
另外,第一基材21的温度优选25℃以上,更优选25~100℃左右。
通过适当地设定这样的条件,能够没有不均地形成致密的等离子体聚合膜3。
还有,在本实施方式中,说明使用等离子体聚合装置,在第一基材21上形成等离子体聚合膜3的步骤,但预先准备具备等离子体聚合膜的基材(粘附体),使用所述粘附体也可。
另外,等离子体聚合膜3的平均厚度优选10~10000nm左右,更优选50~5000nm左右。通过将等离子体聚合膜3的平均厚度设为所述范围内,能够防止接合了第一基材21和第二基材22的接合体的尺寸精度显著降低的情况,同时,能够更可靠地接合。
即,在等离子体聚合膜3的平均厚度小于所述下限值的情况下,可能得不到充分的接合强度。另一方面,在等离子体聚合膜3的平均厚度大于所述上限值的情况下,接合体的尺寸精度可能显著降低。
进而,在等离子体聚合膜3的平均厚度为所述范围内的情况下,对等离子体聚合膜3确保某种程度的形状追随性。因此,例如,在第一基材21的接合面(与等离子体聚合膜3邻接的面)存在凹凸的情况下,虽然取决于所述凹凸的高度,但也可以追随凹凸的形状地使等离子体聚合膜3粘附。其结果,等离子体聚合膜3能够吸收凹凸,缓和在其表面产生的凹凸的高度。
还有,如上所述的形状追随性的程度是等离子体聚合膜3的厚度越厚而越显著。从而,为了充分地确保形状追随性,尽量增大等离子体聚合膜3的厚度即可。
[3]其次,对得到的等离子体聚合膜3的表面31赋予能量。由此,赋予了能量的区域的表面31附近的结合的一部分被切断而活化表面31(第二工序)。
作为向等离子体聚合膜3的表面31赋予能量的方法,只要是能够活化表面31的方法,就可以为任意的方法,但优选照射能量射线的方法。根据所述方法可知,能够有效率地活化等离子体聚合膜3的表面31。而且,根据该方法,能够不以必要以上切断等离子体聚合膜3中的结构,(例如,到达与第一基材21的界面为止),因此,能够避免等离子体聚合膜3的特性降低。
作为能量射线,例如,可以举出紫外光、激光之类的光、电子射线、粒子射线等。
另外,对能量射线,尤其如图2(d)所示,优选使用照射波长150~300nm左右的紫外光的方法。根据所述紫外光可知,能够防止等离子体聚合膜3的特性的显著的降低,同时,能够将宽的范围没有不均地更短时间内处理。因此,能够更效率良好地进行等离子体聚合膜3的表面31的活化。另外,紫外光还具有能够由紫外灯等简单的设备产生的优点。
还有,紫外光的波长更优选160~200nm左右。
另外,照射紫外光的时间只要是能够切断等离子体聚合膜3的表面31附近的结合的程度的时间即可,不特别限定,但优选0.5~30分钟左右,更优选1~10分钟左右。
另外,对等离子体聚合膜3的能量射线的照射可以在任意的气氛中进行,但优选在大气气氛中进行。由此,在控制气氛时,不需要花费劳力和时间或成本,能够更简单地进行活化处理。
通过使周围的水分与这样活化的等离子体聚合膜3的表面31接触,羟基(OH基)自然地结合。还有,所述“活化”是指:切断表面31附近及内部的结合而未被末端化的结合键(悬空键)产生的状态或羟基结合在其被切断的结合键的状态的任一方或这些状态混在的状态。
还有,在等离子体聚合膜3包括有机金属聚合物的情况下,若向等离子体聚合膜3赋予能量,则从等离子体聚合膜3中除去有机成分,导电性成分成为支配性。其结果,被赋予能量(经过了活化处理)的等离子体聚合膜3显示导电性。
[4]其次,准备至少在与第一粘附体(第一基材21和等离子体聚合膜3)接合的面不具备等离子体聚合膜的第二基材(在本实施方式中为不具备等离子体聚合膜的第二基材22)。还有,使该第二基材22、和在所述[3]中活化的等离子体聚合膜3的表面接触地贴合两个基材21、22(参照图3(e))。
由此,接合等离子体聚合膜3的活化的表面和第二基材22。其结果,得到接合体1。
在此,准备的第二基材22的构成材料与第一基材21不同也可。
还有,两个基材21、22的热膨胀率优选大致相等,但相互不同也可。若各基材21、22的热膨胀率大致相等,则在接合了两个基材21、22时,在其接合界面难以产生伴随热膨胀的应力。其结果,在最终得到的接合体1中,能够可靠地防止剥离。另外,在后详述,但在各基材21、22的热膨胀率相互不同的情况下,也在后述的工序中,最佳化贴合两个基材21、22时的条件,由此能够以高的尺寸精度牢固地接合两个基材21、22之间。
另外,两个基材21、22优选刚性相互不同。由此,能够更牢固地接合两个基材21、22。
另外,两个基材21、22中至少一方的构成材料优选包括树脂材料。树脂材料由于其柔软性,在接合了两个基材21、22时,能够缓和在其接合界面产生的应力(例如,伴随热膨胀的应力等)。因此,接合界面变得难以破坏,其结果,能够得到接合强度高的接合体1。
在这样得到的接合体1中,不是如在以往的接合方法中使用的粘接剂一样,利用锚定效果之类的物理结合的粘接,而是基于如共价键一样在短时间内引起的牢固的化学键,接合第一基材21和第二基材22。因此,接合体1极其难以剥离,接合不均等也难以发生。
另外,根据本发明的接合方法可知,不需要如以往的固体接合一样高温(700~800℃左右)下的热处理,因此,还能够将包括耐热性低的材料的基材供给于接合。由此,能够扩大基材的构成材料的选择的范围。
另外,本发明的接合方法可知,仅在两个两个基材21、22中一方的第一基材21设置有等离子体聚合膜3,构成粘附体。由此,在形成等离子体聚合膜3时,第一基材21比较长时间暴露于等离子体,但第二基材22不会暴露于等离子体。因此,例如,第二基材22的对等离子体的耐久性显著降低的情况下,也根据本发明的接合方法,能够牢固地接合第一基材21和第二基材22。从而,对构成第二基材22的材料不需要太考虑对等离子体的耐久性,还具有能够从范围广的材料选择的优点。
在此,优选形成为第二基材22中,至少在本工序中与在第一基材21上形成的等离子体聚合膜3接触的区域即应使等离子体聚合膜3密接的区域的表面结合有羟基(OH基)的状态。若第二基材22的表面成为这样的状态,则第二基材22和等离子体聚合膜3的接合强度提高,能够更牢固地接合两个基材21、22。还有,所述效果推测为如下的现象引起的。
即,在本工序中,在使第二基材22和等离子体聚合膜3接触(密接)时,在第二基材22表面存在的羟基、和等离子体聚合膜3的活化的表面上存在的羟基通过氢键相互前进,在羟基之间产生引力。
另外,通过该氢键来相互牵引的羟基之间根据温度条件等,伴随脱水缩合而从表面脱离。其结果,等离子体聚合膜3和第二基材22的接触界面中,脱离的OH基结合的结合键之间结合。由此,化学性牢固地接合等离子体聚合膜3和第二基材22。
还有,为了形成羟基结合在第二基材22中应使等离子体聚合膜3密接的区域的表面的状态,使用任意方法也可。举出具体例的情况下,有在第二基材22实施氧等离子体等的等离子体处理的方法、实施蚀刻的方法、照射电子射线的方法、照射紫外光的方法、暴露于臭氧的方法、或组合这些的方法等。通过使用这样的方法,能够清洁化第二基材22的表面,并且,能够切断表面附近的结合的一部分,活化表面。通过周围的水分与这样的状态的表面接触,羟基(OH基)自然地结合。这样,能够形成羟基结合的状态。
另外,根据第二基材22的构成材料,还有不实施如上所述的处理,羟基也结合在表面的材料。作为所述构成材料,例如,可以举出不锈钢、铝之类的各种金属材料、硅、石英玻璃之类的硅系材料、氧化铝之类的氧化物系陶瓷材料等。还有,第二基材22的整体可以不包括如上所述的材料,至少表面附近包括如上所述的材料即可。
包括这样的材料的第二基材22的表面被氧化膜覆盖,在该氧化膜的表面结合有羟基。从而,若使用包括这样的材料的第二基材22,则即使不实施使羟基露出的处理,也能够牢固地结合第一基材21和第二基材22。
另外,在第二基材22的表面及内部包含第二基材22的结合被切断而未被末端化的活性结合键(悬空键)也可。进而,可以为羟基和悬空键混在的状态。若在第二基材22的表面及内部包含悬空键,则在等离子体聚合膜3的表面露出的悬空键之间实现来源于构筑为网络状的共价键的更牢固的接合。其结果,能够隔着等离子体聚合膜3更牢固地接合第一基材21和第二基材22。
还有,在所述工序[3]活化的等离子体聚合膜3的表面的活性状态经时而缓和。因此,在所述工序[3]结束后,尽早进行本工序[4]。具体来说,优选在所述工序[3]结束后,在60分钟内进行本工序[4],更优选在5分钟内进行。若在所述时间内,则等离子体聚合膜3的表面维持充分的活性状态,因此,在贴合时能够得到充分的接合强度。
换而言之,活化前的等离子体聚合膜3的化学性稳定,耐气候性优越。因此,在结束了所述工序[2]的时点的等离子体聚合膜3适合长期保存。从而,在制造或购入大量具备那样的等离子体聚合膜3的第一基材21(粘附体)而保存时,在进行本工序[4]的贴合临前,仅对必要的个数进行所述工序[3]的情况下,从接合体的制造效率的观点来说有效。
还有,在以往的硅直接接合之类的固体接合中,即使将表面活化,其活性状态在大气中也只能维持几秒~几十秒左右的极短时间。因此,存在进行了表面的活化后,不能充分地确保进行贴合接合的两个部件等的作业的时间的问题。
针对此,根据本发明可知,通过等离子体聚合膜的作用,能够将活性状态维持几分钟以上的比较长的时间。因此,能够充分地确保作业所需的时间,能够提高接合作业的效率化。
如上所述地能够得到接合体(本发明的接合体)1。
这样得到的接合体1优选第一基材21和第二基材22之间的接合强度为5MPa(50kgf/cm2)以上,更优选10MPa(100kgf/cm2)以上。具有这样的接合强度的接合体1能够充分地防止其剥离。还有,如后所述,使用接合体1构成液滴喷出头的情况下,得到耐久性优越的液滴喷出头。另外,根据本发明的接合方法可知,能够效率良好地制作第一基材21和第二基材22以如上所述的大的接合强度接合的接合体1。
另外,在等离子体聚合膜3包括有机金属聚合物的情况下,通过使该等离子体聚合膜3活化,显示导电性。经过了这样的活化处理的等离子体聚合膜3的电阻率根据构成材料的组成而略不同,但优选1×10-3Ω·cm以下,更优选1×10-4Ω·cm以下。若经过活化处理,显示了导电性的等离子体聚合膜3的电阻率这样充分地低,则所述等离子体聚合膜可以作为损失少的配线充分地利用。
另外,等离子体聚合膜3虽然取决于其厚度,但具有比较高的透光性。还有,通过适当地设定等离子体聚合膜3的形成条件(等离子体聚合时的条件或原料气体的组成等),能够调节等离子体聚合膜3的折射率。具体来说,通过提高等离子体聚合时的高频的输出密度,能够提高等离子体聚合膜3的折射率,相反,通过降低等离子体聚合时的高频的输出密度,能够降低等离子体聚合膜3的折射率。
具体来说,根据硅烷系气体为原料的等离子体聚合法可知,得到折射率的范围为1.35~1.6左右的等离子体聚合膜3。这样的等离子体聚合膜3由于其折射率接近水晶或石英玻璃的折射率,因此,例如,在光程贯通等离子体聚合膜3的结构的光学部件时适当地使用。另外,能够调节等离子体聚合膜3的折射率,因此,能够制作期望的折射率的等离子体聚合膜3。
还有,在得到了接合体1后,对该接合体1,根据需要,进行以下的两个工序[5A]、[5B]中任一方或双方也可。
[5A]如图3(g)所示,对于得到的接合体1,向第一基材21和第二基材22相互接近的方向加压。
由此,等离子体聚合膜3的表面更接近第二基材22的表面,能够进一步提高接合体1中的接合强度。
此时,对接合体1加压时的压力优选尽量高。由此,能够与该压力成比例而提高接合体1中的接合强度。
还有,根据各基材21、22的构成材料或厚度、接合装置等的条件,适当地调节该压力即可。具体来说,根据基材21、22的构成材料或厚度等而略不同,但优选1~10MPa左右,更优选1~5MPa左右。由此,能够可靠地提高接合体1的接合强度。还有,该压力大于所述上限值也无妨,但根据各基材21、22的构成材料,在各基材21、22可能发生损伤等。
另外,加压的时间不特别限定,但优选10秒~30分钟左右。还有,就加压的时间来说,根据加压时的压力来适当地变更即可。具体来说,对接合体1加压时的压力越高,越能够缩短加压的时间。
[5B]如图3(g)所示,加热得到的接合体1。
由此,能够提高接合体1中的接合强度。
此时,加热接合体1时的温度只要比室温高,小于接合体1的耐热温度,就不特别限定,但优选25~100℃左右,更优选50~100℃左右。若以所述范围的温度加热,则能够可靠地防止接合体1由于热量而变质·劣化的情况,同时,能够可靠地提高接合强度。
另外,加热时间不特别限定,但优选1~30分钟左右。
另外,在进行所述工序[5A]、[5B]的双方的情况下,优选同时进行这些。即,如图3(g)所示,优选对接合体1加压的同时加热。由此,能够相辅相成地发挥加压引起的效果、和加压引起的效果,能够特别地提高接合体1的接合强度。
还有,在两个基材21、22的热膨胀率大致相等的情况下,优选如上所述地加热接合体1,但在两个基材21、22的热膨胀率相互不同的情况下,优选尽量在低温下进行接合。通过在低温下进行接合,能够实现在接合界面产生的热应力的进一步的减少。
具体来说,虽然取决于两个基材21、22的热膨胀率差,但优选在25~50℃左右的温度下进行接合,更优选在25~40℃左右的温度下进行接合。在这样的温度范围的情况下,即使两个基材21、22的热膨胀率差大到某种程度,也能够充分地减小在接合界面产生的热应力。其结果,能够可靠地防止接合体1中的翘起或剥离等的发生。
在这种情况下,两个基材21、22的热膨胀数的差为5×10-5/K以上的情况下,如上所述,强烈推荐在尽量低温下进行接合。
通过进行如上所述的工序,能够实现接合体1中的接合强度的进一步的提高。
<液滴喷出头>
其次,说明将本发明的接合体适用于喷墨式记录头的情况下的实施方式。
图4是表示适用本发明的接合体得到的喷墨式记录头(液滴喷出头)的分解立体图,图5是表示图4所示的喷墨式记录头的主要部分的结构的剖面图,图6是表示具备图4所示的喷墨式记录头的喷墨打印机的实施方式的概略图。还有,图4中与通常使用的状态上下倒置而示出。
图4所示的喷墨式记录头(本发明的液滴喷出头)10搭载于图6所示的喷墨打印机(本发明的液滴喷出装置)9。
图6所示的喷墨打印机9具备装置主体92,设置有在上部后方设置记录纸张P的托架921、向下部后方排出记录纸张P的排纸口922、和上部面上的操作面板97。
操作面板97具备:例如包括液晶显示器、有机EL显示器、LED灯等,显示错误消息等的显示部(未图示);包括各种开关等的操作部(未图示)。
另外,在装置主体92的内部主要具有:具备往返移动的头单元93的印刷装置(印刷机构)94;将记录纸张P一张张送入印刷装置94的供纸装置(供纸机构)95;控制印刷装置94及供纸装置95的控制部(控制机构)96。
通过控制部96的控制,供纸装置95将记录纸张P一张张间歇输送。该记录纸张P通过头单元93的下部附近。此时,头单元93在与记录纸张P的输送方向大致正交的方向上往返移动,进行对记录纸张P的印刷。即,头单元93的往返移动及记录纸张P的间歇输送成为印刷中的主扫描及副扫描,进行喷墨方式的印刷。
印刷装置94具备:头单元93;成为头单元93的驱动源的滑架电动机941;接受滑架电动机941的旋转,使头单元93往返移动的往返移动机构942。
头单元93在其下部具有:具备多个喷嘴孔111的喷墨式记录头10(以下,简称为“头10”);对头10供给墨液的墨盒931;搭载了头10及墨盒931的滑架932。
还有,作为墨盒931,使用填充有黄色、青色、品红色、黑色(黑)的四色的墨液的墨盒,由此能够进行彩色印刷。
往返移动机构942具有:其两端支撑于框架(未图示)的滑架引导轴943;与滑架引导轴943平行地延伸的正时(timing)皮带944。
滑架932往返移动自如地支撑于滑架引导轴943,并且,固定于正时皮带944的一部分。
通过滑架电动机941的工作,通过滑轮使正时皮带944正反行进的情况下,头单元93被滑架引导轴943引导而往返移动。
还有,在该往返移动时,从头10适当地喷出墨液,进行对记录纸张P的印刷。
供纸装置95具有:成为其驱动源的供纸电动机951;通过供纸电动机951的工作而旋转的供纸滚筒952。
供纸滚筒952包括夹着记录纸张P的输送路径(记录纸张P)而上下对置的从动滚筒952a和驱动滚筒952b,驱动滚筒952b与供纸电动机951连结。由此,供纸滚筒952将在托架921设置的多张记录纸张P向印刷装置94一张张送入。还有,代替托架921,形成为能够将收容记录纸张P的供纸盒装卸自如地装配的结构也可。
控制部96例如基于从个人计算机或数码相机等的主机输入的印刷数据,控制印刷装置94或供纸装置95等,由此进行印刷。
控制部96虽然均为图示,但主要具备:驱动控制存储各部的控制程序等的存储器、压电元件(振动源)14,控制墨液的喷出时序的压电元件驱动回路、驱动印刷装置(滑架电动机941)94的驱动驱动回路、驱动供纸装置95(供纸电动机951)的驱动回路、及输入来自主机的印刷数据的通信回路、与这些电连接,进行各部中的各种控制的CPU。
另外,CPU例如与能够检测墨盒931的墨液残量、头单元93的位置等的各种传感器等分别电连接。
控制部96经由通信回路,输入印刷数据,储存于存储器中。CPU处理该印刷数据,基于该处理数据及来自各种传感器的输入数据,向各驱动回路输出驱动信号。利用该驱动信号,使压电元件14、印刷装置94及供纸装置95分别工作。由此,对记录纸张P进行印刷。
以下,参照图4及图5的同时详述头10(本发明的液滴喷出头)。
头10具有:具备喷嘴板11、墨液室基板12、振动板13、和与振动板13接合的压电元件(振动源)14的头主体17;收容该头主体17的机体16。还有,该头10构成按需形压电喷射式头。
喷嘴板11例如包括SiO2、SiN、石英玻璃之类的硅系材料、Al、Fe、Ni、Cu或含有这些的合金之类的金属系材料、氧化铝、氧化铁之类的氧化物系材料、炭黑、石墨之类的碳系材料等。
在该喷嘴板11形成有用于喷出墨液滴的多个喷嘴孔111。根据印刷精度,适当地设定这些喷嘴孔111之间的间距。
在喷嘴板11固着(固定)有墨液室基板12。
该墨液室基板12通过喷嘴板11、侧壁(隔壁)122及后述的振动板13,划分形成为多个墨液室(腔室、压力室)121、贮存从墨盒931供给的墨液的贮存室123、从贮存室123向各墨液室121分别供给墨液的供给口124。
各墨液室121分别形成为长方形状(长方体状),对应于各喷嘴孔111而配设。各墨液室121通过后述的振动板13的振动,可以改变容积,通过该容积变化,喷出墨液。
作为用于得到墨液室基板12的母材,例如,可以使用硅单晶基板、各种玻璃基板、各种树脂基板等。这些基板均为通用的基板,依次,通过使用这些基板,能够降低头10的制造成本。
另一方面,在墨液室基板12的喷嘴板11的相反侧接合振动板13,进而,在振动板13的墨液室基板12的相反侧设置有多个压电元件14。
另外,在振动板13的规定位置沿振动板13的厚度方向贯通而形成有连通孔131。能够经由该连通孔131从所述墨盒931向贮存室123供给墨液。
各压电元件14分别在下部电极142和上部电极141之间间介插入有压电体层143,对应于各墨液室121的大致中央部而配设。各压电元件14与压电元件驱动回路电连接,基于压电元件驱动回路的信号而工作(振动、变形)。
各压电元件14分别作为振动源发挥功能,振动板13通过压电元件14的振动来振动,发挥瞬间提高墨液室121的内部压力的功能。
机体16例如包括各种树脂材料、各种金属材料等,在该机体16固定、支撑有喷嘴板11。即,在机体16具备的凹部161收容了头主体17的状态下,利用在凹部161的外周部形成的台阶162支撑喷嘴板11的缘部。
在如上所述的喷嘴板11和墨液室基板12的接合、墨液室基板12和振动板13的接合、及喷嘴板11和机体16的接合中至少一处中适用本发明的接合方法。
换言之,在喷嘴板11和墨液室基板12的接合体、墨液室基板12和振动板13的接合体、及喷嘴板11和机体16的接合体中至少一处中适用本发明的接合体。
在这样的头10中,在上述接合界面间介插入接合有等离子体聚合膜。因此,接合界面的接合强度及耐药品性变高,由此,对在各墨液室121贮存的墨液的耐久性的液密性变高,其结果,头10的可靠性高。
另外,能够在非常低的温度下进行可靠性高的接合,因此,在用线膨胀系数不同的材料也能够形成大面积的头这一点上有利。
另外,若在头10的一部分中适用本发明的接合体,则能够构筑尺寸精度高的头10。因此,能够高度地控制从头10喷出的墨液滴的喷出方向或头10和记录纸张P的远离距离,能够提高基于喷墨打印机9的印字结果的品味。
在这样的头10中,在未经由压电元件驱动回路被输入规定的喷出信号的状态即在压电元件14的下部电极142和上部电极141之间未施加电压的状态下,在压电体层143不发生变形。因此,在振动板13也不发生变形,在墨液室121不发生容积变化。从而,从喷嘴孔111不喷出墨液滴。
另一方面,在经由压电元件驱动回路输入了规定的喷出信号的状态即在压电元件14的下部电极142和上部电极141之间施加了一定电压的状态系,在压电体层143发生变形。由此,振动板13大幅度挠曲,发生墨液室121的容积变化。此时,墨液室121内的压力瞬间地变高,从喷嘴孔111喷出墨液滴。
若一次墨液的喷出结束,则压电元件驱动回路停止向下部电极142和上部电极141之间的电压的施加。由此,压电元件14恢复为大致原来的形状,墨液室121的容积增大。还有,此时,从墨盒931朝向喷嘴孔111的压力(向正向的压力)作用于墨液。因此,防止空气从喷嘴孔111进入墨液室121,与墨液的喷出量相称的量的墨液从墨盒931(贮存室123)供给于墨液室121。
这样,在头10中,向欲印刷的位置的压电元件14经由压电元件驱动回路依次输入喷出信号,由此能够印刷任意(期望的)文字或图形等。
还有,在头10中,代替压电元件14,具有电热变换元件也可。即,头10可以为利用基于电热变换元件的材料的热膨胀喷出墨液的结构(所谓“泡沫喷射方式”(泡沫喷射)为注册商标)。
在所述结构的头10中,在喷嘴板11设置有以赋予疏水性为目的而形成的被膜114。由此,在从喷嘴孔111喷出墨液滴时,能够防止墨液滴残留在该喷嘴孔111的周边的情况。其结果,能够使从喷嘴孔111喷出的墨液滴可靠地着落于作为目的的区域。
以上,基于图示的实施方式,说明了本发明的接合方法、接合体、液滴喷出头及液滴喷出装置,但本发明不限定于这些。
例如,在本发明的接合方法中,根据需要,追加一个以上的任意的目的的工序也可。
另外,本发明的接合体当然可以适用于液滴喷出头以外的结构。具体来说,本发明的接合体例如可以适用于半导体装置、MEMS、微型反应器等。
实施例
其次,说明本发明的具体的实施例。
1.接合体的制造
以下,在各实施例及各比较例中,分别制作20个接合体。
(实施例1)
首先,作为第一基材,准备了纵20mm×横20mm×平均厚度1mm的单晶硅基板,作为第二基材,准备了纵20mm×横20mm×平均厚度1mm的玻璃基板。
其次,将单晶硅基板(第一基材)收容于图1所示的等离子体聚合装置100的腔室101内,进行了利用氧等离子体的衬底处理。
其次,在进行了衬底处理的面形成了平均厚度200nm的等离子体聚合膜。还有,成膜条件如下所述。
<成膜条件>
·原料气体的组成:八甲基三硅氧烷
·原料气体的流量:50sccm
·载体气体的组成:氩
·载体气体的流量:100sccm
·高频电力的输出:100W
·高频输出密度:25W/cm2
·腔室内压力:1Pa(低真空)
·处理时间:15分钟
·基板温度:20℃
其次,对得到的等离子体聚合膜以以下所示的条件照射紫外线。
<紫外线照射条件>
·气氛气体的组成:大气(空气)
·气氛气体的温度:20℃
·气氛气体的压力:大气压(100kPa)
·紫外线的波长:172nm
·紫外线的照射时间:5分钟
另一方面,对玻璃基板(第二基材)的一面进行了利用氧等离子体的衬底处理。
其次,使等离子体聚合膜的照射了紫外线的面、和玻璃基板的实施了衬底处理的面接触地重合了单晶硅基板和玻璃基板。
还有,对于各基板,以3MPa加压的同时在80℃下加热,维持了15分钟。由此,接合各基材,得到了接合体。
(实施例2)
将加热的温度从80℃变更为25℃,除此以外,与所述实施例1相同地得到了接合体。
(实施例3~12)
将第一基材的构成材料及第二基材的构成材料分别变更为表1所示的材料以外,与所述实施例1相同地得到了接合体。
(实施例13)
将高频电力的输出变更为150W(高频输出密度设为37.5W/cm2),除此以外,与所述实施例1相同地得到了接合体。
(实施例14)
将高频电力的输出变更为200W(高频输出密度设为50W/cm2),除此以外,与所述实施例1相同地得到了接合体。
(实施例15~17)
将原料气体变更为表1所示的组成的气体,将等离子体聚合膜的组成变更,除此以外,分别与所述实施例1、3、4相同地得到了接合体。
(比较例1~3)
用环氧系粘接剂粘接了各基材之间,除此以外,分别与所述实施例1、3、4相同地得到了接合体。
(比较例4)
代替等离子体聚合膜,如下所述地形成接合膜,除此以外,与所述实施例1相同地得到了接合体。
首先,准备了作为硅酮材料,含有具有聚二甲基硅氧烷骨架的物质,作为溶媒,含有甲苯及异丁醇的液态材料(信越化学工业公司制“KR-251”:粘度(25℃)18.0mPa·s)。
其次,在单晶硅基板的表面进行了利用氧等离子体的表面处理后,在该面涂敷了液态材料。
其次,将得到的液态被膜在常温(25℃)下干燥24小时。由此,得到了接合膜。
另外,与此相同地,在玻璃基板进行了利用氧等离子体的表面处理后,在该面得到了接合膜。
还有,向各接合膜的周缘部的宽度3mm的框状的区域有选择地照射了紫外线。
其次,使接合膜之间密接地对硅基板和玻璃基板加压的同时加热。由此,得到了硅基板和玻璃基板隔着接合膜接合的接合体。
(比较例5~10)
将第一基材的构成材料及第二基材的构成材料分别变更为表1所示的材料,除此以外,与所述比较例4相同地得到了接合体。
(比较例11)
代替等离子体聚合膜,如下所述地形成接合膜,除此以外,与所述实施例1相同地得到了接合体。
首先,在单晶硅基板的表面进行了利用氧等离子体的表面处理后,使六甲基二硅氨烷(HMDS)的蒸汽与该面的周缘部的宽度3mm的框状的区域有选择地接触,由此得到了包括HMDS的接合膜。
另外,与此相同地,在玻璃基板进行了利用氧等离子体的表面处理后,在该面得到了包括HMDS的接合膜。
还有,向各接合膜的周缘部的宽度3mm的框状的区域有选择地照射了紫外线。
其次,使接合膜之间密接地对硅基板和玻璃基板加压的同时加热。由此,得到了硅基板和玻璃基板隔着接合膜接合的接合体。
2.接合体的评价
2.1接合强度(割裂强度)的评价
关于在各实施例、各比较例及各参考例中得到的接合体,分别测定了接合强度。
接合强度的测定是通过剥离各基材时,测定剥离临前的强度而进行。另外,接合强度的测定是分别在接合临前、和接合后反复进行100次在-40℃~125℃的温度循环后进行。还有,按以下的基准评价了接合强度。
<接合强度的评价基准>
◎:10MPa(100kgf/cm2)以上
○:5MPa(50kgf/cm2)以上、小于10MPa(100kgf/cm2)
△:1MPa(10kgf/cm2)以上、小于5MPa(100kgf/cm2)
×:小于1MPa(10kgf/cm2)
2.2尺寸精度的评价
关于在各实施例、各比较例中得到的接合体,分别测定了厚度方向的尺寸精度。
在尺寸精度的测定中,测定正方形的接合体的各角部的厚度,算出四个部位的厚度的最大值和最小值之差来进行。还有,按以下的基准,评价了该差。
<尺寸精度的评价基准>
○:小于10μm
×:10μm以上
2.3耐药品性的评价
将在各实施例、各比较例中得到的接合体中各10个在以下的条件下浸渍于维持为80℃的喷墨打印机用墨液(爱普生公司制、HQ4)中三周。另外,将接合体的剩余的10个浸渍于同样的墨液中50天。还有,剥离各基材,确认了墨液是否浸入了接合界面。还有,按以下的基准,评价了其结果。
<耐药品性的评价基准>
◎:完全没有浸入
○:角部略有浸入
△:沿缘部浸入
×:浸入内侧
2.4红外线吸收(FT-IR)的评价
关于在各实施例、各比较例中得到的接合体中的接合膜,分别获得了红外光吸收光谱。还有,关于各光谱,算出了(1)相对于归属于硅氧烷(Si-O)键的峰的归属于Si-H键的峰的相对强度、和(2)相对于归属于硅氧烷键的峰的归属于甲基的峰的相对强度。
2.5折射率的评价
关于在各实施例、各比较例中得到的接合体中的接合膜分别测定了折射率。
2.6光透过率的评价
关于在各实施例、各比较例中得到的接合体中能够测定光透过率的接合体,测定了光透过率。还有,按以下的评价基准,评价了得到的光透过率。
<光透过率的评价基准>
◎:超过95%
○:超过90%且小于95%
△:超过85%且小于90%
×:小于85%

*PET:聚对苯二甲酸乙二醇酯
PI:聚酰亚胺
评价结果中,例如“○◎”表示○和◎混在的情况。
从表1明确可知,在各实施例中得到的接合体在接合强度、尺寸精度及耐药品性的项目中均显示优越的特性。
另一方面,在各比较例中得到的接合体的接合强度及耐药品性不充分。另外,确认到尺寸精度特别低。
产业上的可利用性
本发明的接合方法包括:第一工序,其中,准备在基材上具备等离子体聚合膜的第一粘附体;第二工序,其中,向所述等离子体聚合膜的表面赋予能量,使所述等离子体聚合膜的表面活化;第三工序,其中,准备至少在与所述第一粘附体接合的面不具备等离子体聚合膜的第二粘附体,并使所述活化的等离子体聚合膜的表面与所述第二粘附体密接的方式贴合所述第一粘附体和所述第二粘附体,从而得到接合体。因此,能够将第一粘附体和第二粘附体以高的尺寸精度牢固地且效率良好地接合。另外,不具备等离子体聚合膜的第二粘附体不暴露于等离子体,因此,对于第二粘附体的构成材料,可以不考虑对等离子体的耐久性而从范围广的材料选择。从而,本发明的接合方法具有产业上的可利用性。

接合方法、接合体、液滴喷出头及液滴喷出装置.pdf_第1页
第1页 / 共41页
接合方法、接合体、液滴喷出头及液滴喷出装置.pdf_第2页
第2页 / 共41页
接合方法、接合体、液滴喷出头及液滴喷出装置.pdf_第3页
第3页 / 共41页
点击查看更多>>
资源描述

《接合方法、接合体、液滴喷出头及液滴喷出装置.pdf》由会员分享,可在线阅读,更多相关《接合方法、接合体、液滴喷出头及液滴喷出装置.pdf(41页珍藏版)》请在专利查询网上搜索。

本发明的接合方法包括:在第一基材的表面上形成等离子体聚合膜,得到第一粘附体的第一工序;向等离子体聚合膜的表面照射紫外光,活化表面的第二工序;准备至少在供给于与第一粘附体的接合的面不具备等离子体聚合膜的第二粘附体(第二基材),使该第二粘附体和活化的等离子体聚合膜的表面接触地贴合第一粘附体和第二粘附体,得到接合体的第三工序。 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 化学;冶金 > 染料;涂料;抛光剂;天然树脂;黏合剂;其他类目不包含的组合物;其他类目不包含的材料的应用


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1