本发明涉及一种使地下含烃地层渗透率较高区域的渗透率降低的方法,更具体地说涉及一种改进钻入含烃地层的生产井眼和(或)注入井眼处或远离井眼处的平面和垂直波及系数和流动剖面的方法。 垂面波及系数低是由于地层中渗透率较高的地质带与渗透率较低的地质带产生垂向重叠而造成的。平面泼及系数低是由于地层基岩中有渗透率远高于基岩的高渗透率薄间层和高渗透率空隙(垂向裂缝网)存在。流体在垂面或平面泼及系数小的地层中的流动剖面和扫油效率一般是较差的。特别是当垂向非均质区和(或)裂缝网或其它结构空隙与地下井眼(流体通过这里注入和产出)流通时波及系数低这一问题尤为突出。
为了解决波及系数低这一问题,人们已经做了许多努力。在美国专利3,762,476;3,981,363;4,018,286;和4,039,029中,Gall或Gall等人介绍了通过在地层的高渗透率地区生成凝胶以降低该处渗透率的各种方法。美国专利3,762,476,介绍把象聚丙烯酰胺这样的聚合物与交联剂先后注入地层内。它们认为这些先后注入的段塞能够渗透到需处理的地质带并就地生成凝胶。
人们通常认为,要使聚合物/交联剂体系有效,需要将凝胶成份按顺序分别注入。因为如在地面上混合,凝胶将在有效地渗透到需处理区域之前就变定了。然而,实际上,按美国专利3,762,476公开的那样的用顺序注入凝胶体系的方法处理,其结果证明是不能令人满意的,这是因为这种方法不能使聚合物与交联剂在地层中充分混合并胶凝。其结果是仅在未混合的两种凝胶成份的界面上生成凝胶,而且常常是远离所需处理的区域。因此需要一种胶凝方法,该方法能生成具有预先确定的胶凝速度、强度和稳定性的凝胶,以满足地下含烃地层中需处理区域的特殊要求。
本发明提供一种改进为生产油井和(或)注入油井所钻入的地下含烃地层的垂面和平面波及系数并相应地改进地层中注入流体和产出流体的流动剖面和扫油效率的方法。这种目的是用特制的流动或非流动聚合物凝胶来达到的。
该凝胶包括高分子量、可溶于水的丙烯酰胺聚合物及交联剂,交联剂则包括配离子和(或)配分子,制备凝胶的方法是先在地面上配制含有聚合物和交联剂的胶凝溶液,然后通过一个与所需处理的区域流通的井眼把胶凝溶液注入需处理区域。为了阻止或防止胶凝溶液进入邻近的不需处理区域,宜使胶凝溶液在达到处理区域之前至少已部分胶凝。最终形成的凝胶是一种连续的单相凝胶,它使该处理域的渗透率显著降低。
经过胶凝处理后,可将流体注入到与井眼相流通的含烃地层中,也可由此产出流体。该凝胶基本上不会从此区域中流出,而且是耐久和抗就地降解的。
本方法同本领域已知的其它胶凝方法相比有明显的优点。使用本发明时为使凝胶适合于特定的地下应用的需要,要先确定所需处理的地下区域的处理要求。给出这些要求后,就能预先定出为满足这些要求所需的凝胶的胶凝速度、凝胶强度和稳定性,此后,按照指定的可控制胶凝参数与受其影响的凝胶性能的相互关系在地面上在控制的条件下生产出具有所需预定性能的凝胶。
本发明中用到的一些术语的定义如下:地层是由二个通常的区域组成,即“基岩”和“空隙”。“空隙”是指地层中相对于基岩具有常高渗透率的体积或空洞空间,它包括薄间层,裂缝,裂缝网,次生孔隙,溶洞,雨痕孔,冲蚀穴,空穴等等。“基岩”实质上指地层体积除空隙外的剩余部分,其特征是均质,连续,无空隙且常为坚密的油藏物质。
基岩是由在水平方向延伸的、具有连续地质性质的特别地下物质的水平“带”所组成的。“垂面波及系数”是指流体垂向流过地层时,用渗透率表示的地质均质性程度。“平面波及系数”是指流体水平流过地层时,用渗透率表示的地质均质性程度。“流动剖面”定性地描述了通过地层的流体的均匀性,而“扫油效率”是与“流动剖面”相似的定量描述。“封堵”是指地层某一区域的渗透率的显著降低。
这里用到的术语“凝胶”是指具有极高分子量的连续的三维交联聚合网状物。凝胶可根据其在地面处于环境大气压下非封闭时在重力作用下的流动能力而定性地定义为“流动的”或“非流动的”。流动凝胶可在这些条件下流动,而非流动凝胶则不能。然而,这里把非流动凝胶和流动凝胶都定义为具有足以使它们在注入到所需处理的区域后无法从区域扩展到渗透性较小的邻近区域结构。
这里也提到部分胶凝溶液。部分胶凝溶液的粘度至少比非交联聚合物溶液的粘度更大些以使之不能进入不需处理的、渗透能力较小的区域,但是它的流动性又足以使它能驱替到所要求处理区域。部分胶凝溶液中的交联剂已与聚合物产生不完全的反应但以后仍能继续进行反应直至反应完全,生成所要求的凝胶。
本发明所用的凝胶成份包括丙烯酰胺聚合物和交联剂。丙烯酰胺聚合物可以是聚丙烯酰胺也可以是部分水解的聚丙烯酰胺,这取决于它所含羧基的数目。这里把以酸形式存在的丙烯酰胺的含量基本上少于1%的丙烯酰胺聚合物称为聚丙烯酰胺(PA);把以酸形式存在的丙烯酰胺的含量至少为1%,但不超过100%的丙烯酰胺聚合物称为部分水解聚丙烯酰胺(PHPA)。丙烯酰胺平均分子量约为10000-50000000,希望约为100000-20000000,最好约为200,000-12,000,000。
交联剂量一种配合物或配合物的混合物。术语“配合物”定义为含两个或两个以上的相互缔合的离子、原子团或分子的离子或分子集团。配合物离子有明显的带电性,而配合物分子则为电中性。
本发明用的配合物包括至少一个或多个电正性铬Ⅲ和一个或多个电负性的羧酸根。该配合物还可含有一个或多个电负性的氢氧根和/或氧(这是有利的)。人们相信当两个或多个铬Ⅲ出现在配合物中时,氧和氢氧根可有助于桥接铬Ⅲ。根据需要,每一配合物可含有另外的对配合物交联性能没有决定性影响的其它物质。例如,一价或二价的无机离子(仅起中和配合物电荷的作用),或一个或多个水分子都可和每个配合物联在一起。这类配合物的代表性的表达式包括:
[Cr3(CH3CO2)6(OH)2]+1;
[Cr3(OH)2(CH3CO2)6]NO3·6H2O;
[Cr3(H2O)2(CH3CO2)6]+3;
[Cr3(H2O)2(CH3CO2)6](CH3CO2)3·H2O;等。
三价铬和铬离子是等价概念,这是用铬Ⅲ表示。羧酸根适宜由水溶性的羧酸盐衍生而来,特别是由低分子量的一元酸的盐衍生而来。所述羧酸根包括甲酸根,乙酸根,丙酸根,乳酸根和它们的低级取代衍生物,及它们的混合物,根据情况含有的无机离子包括钠离子,硫酸根,硝酸根和氯离子。
上述多种配合物和它们的制备是制革工艺中熟知的。这些配合物在下列中有描述,它们是Shuttleworth and Russel,Journal of The Society of Leather Trades′Chemists,
“The kinetics of Chrome Tannage Part Ⅰ.”,
United kingdom,1965,v.49,p.133-154;“Part Ⅲ,”
United kingdom,1965,v.49,p.251-260;“Part Ⅳ,”
United kingdom,1965,v.49,p.261-286;and Von
Erdman,Das.Leder,“Condensation of Mononuclear
Chromium(Ⅲ)Salts to Polynuclear Comp ounds,”EduardPoether Verlag,Darmstadt,Germany,1963,v.14,p.249;在此加以引述。在下列的一些文献中对典型的属于本发明范围的配合物进行了进一步的描述,这里加以引述,这些文献是Udy,Marvin J.,Chromium,Volume l:Chemistry of Chromium and its Compounds,Peinh old Publishing Corp.,N.Y.,1956,pp.229-233;and Cot-ton and Wilkinson,
Advanced Inorganic Chemistry 3rd Ed.,John wiley and sons,Inc.,N.Y.,1972,pp.836-839。
本发明的配合物并不限于上述文献中的配合物及其混合物,还可包括其它满足上述定义的配合物。
凝胶是通过在地面上把丙烯酰胺聚合物和交联剂混合生成一种可注入的胶凝溶液而形成的。地面混合广义上包括溶液在注地层之前在地面上进行的大量混合或在注入时在井口或近井口处用管线间混合方式同时进行的混合。混合例如可通过使作为交联剂的原材料溶于适当的含水溶剂。典型的原材料包括固体CrAc3·H2O,固体Cr3Ac7(OH)2或可从市场上购得的标有“50%乙酸铬溶液”的溶液,例如Mc Gean化学公司(1250 Terminal Tower,克利夫兰市,俄亥俄州44113,美国)的这种溶液,然后将交联剂溶液与聚合物水溶液混合生成胶凝溶液。还可让作为交联剂的原材料直接溶解在聚合物水溶液中,使之一次生成胶凝溶液。
胶凝溶液中的含水溶剂可以是淡水、也可是盐水,但它所含固体的浓度不能超过该固体在水中的溶解度。惰性填充物,如粉碎的岩石、天然的细岩石或玻璃珠也可加入到胶凝溶液中,以增加凝胶网结构的强度。
本方法使专业人员能用上述成分按特定要求配制具有预先确定的胶凝速度和预先确定的强度和稳定性的凝胶。胶凝速度的定义为在一定时间内凝胶形成的程度,即胶凝溶液中交联的速度。交联程度可用凝胶粘度和(或)强度来定量地表示。非流动凝胶的凝胶强度可定义为凝胶网的内聚力或在外力作用下抵抗变形的能力。流动凝胶的凝胶强度可定义为凝胶对渗滤或流动的抵抗能力。稳定性可定义为热稳定性或相稳定性。热稳定性是指凝胶承受温度极限而不降解的能力。相稳定性是指凝胶抵抗会损坏凝胶的结构和性能的脱水收缩作用的能力。
用本发明的方法,配制满足特定处理区域需要的凝胶,部分是通过找出独立的胶凝参数与胶凝速度,凝胶强度和稳定性这些因变量的相互关系而实现的。独立的胶凝参数是指地面和现场的胶凝条件,它包括:温度,PH值,离子强度和溶剂的具体电解质构成,聚合物浓度,聚合物重量与混合物中铬Ⅲ和羧酸根的比,聚合物的水解程度和聚合物的平均分子量。
用定性的瓶内试验,定量的粘度测定分析,填充柱驱及岩芯驱等方法可找出胶凝参数的可用范围与胶凝速度和凝胶性能等因变量的相互关系。下面介绍一些胶凝参数的可用范围及其与因变量的相互关系。
地面上胶凝溶液的温度下限是溶液的凝固点,温度上限基本上是聚合物的热稳定性极限。在地面,胶凝溶液通常保持室温或高于室温的温度。可通过将含水溶剂加热或冷却来调节温度。在规定的范围内增加温度会加快胶凝速度。
胶凝溶液的初始PH值大约在3~13之间,最好为6~13。虽然在酸性PH值下,也能发生胶凝,但初始PH值降低到7以下对胶凝并不有利。胶凝溶液的初始PH值最好能显碱性即在7到13之间。在规定的范围内,增加PH值会加快胶凝速度。
溶液中聚合物的浓度可以1000ppm左右,直至聚合物在溶剂中的溶解度极限或聚合物溶液的流变制约点。希望浓度能在1000~200,000ppm之间,最好约在3000~100,000之间。在聚合物与交联剂的比例恒定的情况下增加聚合物的浓度会加快胶凝速度和最终凝胶强度。
溶剂的离子强度可在去离子蒸馏水的离子强度至离子浓度接近盐水溶解度极限的盐水的离子强度之间这一范围内。增加溶液的离子强度会加快胶凝速度。
丙烯酰胺聚合物与铬Ⅲ和羧酸根(包括其混合物)的重量比大约是1∶1到500∶1,希望为大约2.5∶1到大约100∶1,最好为大约5∶1到大约40∶1。降低此比例一般会加快胶凝速度并在一定的范围内会增加凝胶强度,特别是在高聚合物浓度恒定的情况下是如此。
水解度大约在0到60%之间,最好约在0到30%之间。在所希望的这一范围内提高水解度会加快胶凝速度,增加聚合物的分子量会增加凝胶的强度。
从这些相互关系中可明显看出,在很大的胶凝速度范围内都可生成凝胶,其中胶凝速度和凝胶性能是胶凝条件的函数。因此,为达到本方法的最佳胶凝处理效果,专业人员要预先定出满足给定区域处理要求的胶凝速度和最后得到的凝胶性能,然后制得具有预先确定的特性的凝胶。处理要求包括现场胶凝条件,如温度、原生水的性质、区域的渗透性和处理后的条件(如注入和生产的压力)。可用本领域技术人员已知的分析方法确定处理要求。如上所述,这些处理要求为预先确定胶凝速度和最终所得的凝胶性能提供了条件,下面继续作些介绍。
胶凝速度慢是有利的,它要足以能在地面上制备胶凝溶液,并使溶液以均匀段塞形式注入井眼并使所有溶液驱替到需处理的区域。胶凝速度太快会使溶液在地面上就产生过多的胶凝,结果由于溶液流变性能差,溶液即使不是不可能也很难注入到井眼或地层。同时,胶凝速度又必须足够快,以使反应能在合理的时间内完成,使处理完毕后井能够继续用于注入或生产。
在处理空隙时,对于某些流动凝胶来说,在其到达基岩与空隙的界面之前即使不是完全胶凝,至少也要产生部分胶凝,这样可防止溶液渗入空隙及基岩中。溶液大量渗入基岩和随之而来的基岩的渗透率的降低会对封塞空隙起到反作用。在本方法中,自变量的值需仔细选择,以便获得满足这些条件的胶凝速度。
注入地层的溶液体积是需要处理区域的体积和位置的函数,还是溶液渗入此区域的程度的函数。本领域的技术人员能确定给定的处理区域所需要的凝胶体积。用区域隔离法(如采用封隔器等)便于把胶凝溶液置于需处理的区域。
注入速度是胶凝速度和操作制约的函数。操作制约包括注入压力和泵量限制。注入速度的确定要保证所有溶液在变得无法泵送之前都能注入到需处理的地质带。凝胶的胶凝时间可以从接近瞬时(对流动凝胶而言)到48小时或更长的时间(对流动凝胶和非流动凝胶而言)。更长的胶凝时间是不合适的,这是出于实际中生产损失的考虑,因为此时注入井和生产井都被封着。
本方法适用于大多数情况下的地层波及性处理,特别适用于处理地层中与生产和注入井流通的区域。流动凝胶特别适用于处理那些空隙,如具有高渗透率的薄间层,裂隙或裂隙网,它们都是通过空隙直接注入井相通,但不直接同生产井相通,最终的凝胶在这里之所以称为流动凝胶是因为它在地面上处于不封闭状态是可流动的。然而,当流动凝胶在注入条件下被限制在空隙中时,它足以交联以保持在原位。这样,流动凝胶就能够有效地封堵空隙。
一般来说,流动凝胶并不适用于处理可与生产并直接相通的空隙,因为流动凝胶没有足够的强度以承受生产过程中的压降并会流回进入井眼。要处理与生产井直接流通的空隙,宜采用非流动的、有足够的强度承受生产中的压降的硬质凝胶。最好经过处理后在生产原油时基本没有凝胶流回井眼。
对某些特殊情况,注入溶液的部分胶凝的程度可保持得很低,以足以使溶液能够进入所选定的高渗透基岩地质带,然而作为非流动凝胶或流动凝胶在原地完成交联。流动凝胶非流动凝胶都可用来处理高渗透率的基岩地质带,因为在胶凝完成后,两者一般都不会从这一地质带流出,这是本发明的必要条件。然而,非流动凝胶,由于其强度较高,更适合于处理与生产井直接连通的高渗透率地质带。
PA更适合于配制非流动凝胶,因为PA的胶凝速度比PHPA慢。这样就能在其变定前将它注入所需处理的区域。PHPA更适合于配制流动凝胶,因为在许多情况下,流动凝胶即使在反应完全的情况下,也仍能注入到需处理区域。已预先确定了能满足给定区域处理要求的胶凝速度和凝胶性能的凝胶是通过调节和确定与胶凝速度和凝胶性能相关的地面胶凝条件进行生产的,因此,生产出来的凝胶对大部分极端地层条件也不敏感。凝胶可用于处理许多不同的地质结构,包括地层基岩内的高渗透率区域及外延到基岩的大空隙(如裂缝和其它洞穴)。凝胶在高达115℃的地层温度和任何地层PH值下仍能保持稳定。凝胶对岩石地层不大敏感,并且能应用于碳酸盐岩、砂岩和具有不同矿物学性质的未固结的或固结的地层。一旦凝胶固定在某一位置后就很难再用物理的或化学的方法来驱替它,除非将其交联网络完全破坏。当凝胶与过氧化氢或次氯酸钠接触时,它是可逆的,但基本上不溶于地层流体。
以下的例子说明本发明的实施和应用,但本发明的范围并不限于这些。
实例1
配制1,020,000升预先确定的胶凝水溶液,该溶液含有PHPA和由铬Ⅲ和乙酸根离子组成的交联剂。制备方法是用含3040kg PHPA的PHPA水溶液与稀释至15%(重量)的“50%乙酸铬水溶液”混合。混合是在注入管线中通过一个简单的管间混合器来完成的。胶凝水溶液的溶剂是H2S含量高的油田水。
在所制得的胶凝溶液中,PHPA与铬Ⅲ和乙酸根离子的比例为10∶1,PHPA的浓度为3000ppm。把这种胶凝溶液以9900升/小时的速度注入到Wyoming Big Horm Basin油田中的一个注入井中的一段37.2米宽的射孔间隔中。处理区域是一个高断裂的Pennyslvanian age砂层。
在注入过程中,从井口对胶凝溶液取样。试样在345kPa的压差下不能通过8微米的滤纸。试样的粘度与前面所描述的在实验室条件下配制的同类凝胶相似。
处理前,在以9900升/小时的速度注入500ppm PHPA水溶液过程中注入井口压力为真空。在以9900升/小时的速度注入500ppm PHPA溶液的情况下,处理一结束,注入井口压力立即升高到1380kPa。在用流动凝胶处理后的两天,在同样的注入条件下,井口压力为1240kPa并保持该压力达6个月。在此期间,在任何一口对应生产井中都没有检测出铬Ⅲ离子。
为了比较,在邻近的,同一地层的一口注入井中注入用铬Ⅵ/氧化还原交联溶液与油田水配成的PHPA凝胶进行处理。此处用的油田水和前面配制凝胶所用的油田水相同。铬Ⅵ在注入水中很快就被还原,结果使得交联剂与PHPA混合的不充分,因而也就不能很好地生成凝胶。向所处理的注入井中注入4,800,000升所配成的溶液。在处理过程中,注入量没有明显的减少。
实例2
在Wyoming Big Horn Basin油田中,选择一口位于以具有大面积的连通裂缝网络的碳酸盐岩层为特征的第二个地层中的注入井,用预先确定的以铬Ⅲ和乙酸根离子交联的PHPA凝胶处理。在这口具有深入地层9米的射孔套管的井中注入950,000升胶凝溶液,该溶液含有12,200kg PHPA,PHPA的浓度范围为3000~7000ppm。
处理前,当以9,900升/小时的速度注入500ppm的PHPA溶液时,注入井井口压力是高真空。用流动凝胶处理后,在同样的注入条件下,注入井井口压力增加到690kPa凝胶处理后,在20英亩、五点布井中的两口对应的生产井增产的石油超过132升/小时。
实例3
在Wyoming Big Horn Basin油田中有一个以碳酸盐岩层和58℃温度为特征的岩层,这个岩层有裂缝并且可能过度酸化。选择一口穿过此岩层的生产井,这口井在大约3.4米的射孔间隔中生产106升/小时油和29,000升/小时水。过多的产水使这口井不经济因而被关闭。这所产的水含有大量H2S,处理水所需的费用很大。
以19,000升/小时的速度向这口井中注入31,800升预先确定的聚丙烯酰胺/铬Ⅲ和乙酸根胶凝溶液。胶凝溶液的溶剂为淡水。胶凝溶液中,丙烯酰胺的浓度为2%,平均分子量为1.1×10。胶凝溶液中聚丙烯酰胺与铬Ⅲ和乙酸根离子的重量比为20∶1。在这个地层中,胶凝溶液变定为非流动凝胶。此后,这口井又恢复生产。油产量增加到超过660升/小时的经济标准,而产水量则降到13,200升/小时以下。
实例4
为了评定用本发明的以铬Ⅲ和乙酸根离子为交联剂的非流动的硬质聚丙烯酰胺凝胶处理产油井以改进波及系数的效果,进行了一系列试验室驱油实验。用一个以40~60目的的砂子做成的渗透率为10达西的岩芯,来模拟需要进行改进波及系数处理的高渗透性油区。
把胶凝溶液注进岩芯中心井孔中。处理后,把水注入岩芯外部,水从中心的井孔中出来,通过对围绕中心井孔的两个园环的压力的测定,可对整个实验过程中的流体流动性和渗透性进行监测。驱油实验采用油田水和原油,并在55℃的油层条件下进行。凝胶包括20,000ppm的聚丙烯酰胺溶液,聚丙烯酰胺基本上没有水解,它的分子量为5,000,000左右。聚丙烯酰胺与铬Ⅲ、乙酸根离子的重量比约为10∶1。
下面的表1给出了用非流动硬质性凝胶处理100%水饱和的岩芯的典型结果。凝胶处理使岩芯的渗透率从15,000毫达西降低到0.25毫达西,为原来的六万分之一。处理后当增加通过量或提高压力时,渗透率仅有轻微的增加。
表1
处理顺序 环1 环2
(0-0.074PV) (0-0.297PV)
最初盐水渗透率,md 13,000 15,100
以192毫升/小时的速度注入
0.19PV凝胶
相对流度的倒数,cp 1,500 2,100
以192毫升/小时的速度注入
0.3PV盐水
相对流动的倒数,cp 14 16
在倒流之前封闭21.7小时
以6毫升/小时的速度注入
0.12PV盐水
相对流度的倒数,cp 35,000 124,000
渗透率降低 69,000 242,000
渗透率,md 0.19 0.062
产生的铬浓度,ppm 3.9-2.9
以12毫升/小时的速度注入0.79PV盐水
相对流度的倒数,cp 63,000 82,000
渗透率降低 124,000 161,000
渗透率,md 0.104 0.094
产生的铬浓度,ppm 3.1-1.6
以24毫升/小时的速度注入0.18PV盐水
相对流度的倒数,cp 41,000 49,000
渗透率降低 80,000 96,000
渗透率,md 0.16 0.16
产生的铬浓度,ppm 1.8-1.1
以48毫升/小时的速度注入0.50PV盐水
相对流度的倒数,cp 26,000 33,000
渗透率降低 52,000 65,000
渗透率,md 0.25 0.23
产生的铬浓度,ppm 1.3~0.6
在55℃,盐水粘度=0.51cp
重复试验用少得多的凝胶,即用0.08PV代替表1中的0.19PV,渗透率的降低几乎和表1中所列的相同。
另外又进行了一系列试验来观察油饱和度的影响。对岩芯首先用从Big Horn Basin油田中得到的Wyoming原油进行注入,然后用2PV产出的水进行注入,接着用凝胶处理岩芯,记录所得的对油和水的渗透率降低的结果。结果如下面的表2所示,处理后的水渗透率约为1~2豪达西,而表1中的无油注入的渗透率为0.25毫达西。和表1一样,当通过量和压力增加时,渗透率仅略有增加。而且,当用表2中的处理容积的一半来处理时同样有效。
表2
处理顺序 环#1 环#2
(0-0.074PV) (0-0.297PV)
最初盐水渗透率,md 8700 8800
以192cc/hr小时的速度注入
1.27PV原油
油饱和度,PV 0.774
流度,md/cp 24 15
相对流度的倒数,cp 370 580
以192cc/hr的速度注入2.06
PV盐水
(倒流)
油饱和度,PV 0.298
流度,md/cp 630 1,300
相对流度的倒数,cp 14 7.0
以192cc/hr的速度注入0.164
PV凝胶
油饱和度,PV 0.298
流度,md/cp 8.6 6.8
相对流度的倒数,cp 1,000 1,300
以192cc/hr的速度注入0.030
PV盐水
油饱和度,PV 0.298
在盐水倒流之前封闭23.8小时
以6cc/hr的速度注入0.38PV盐水
油饱和度,PV 0.169
流度,md/cp 0.19 0.09
相对流度的倒数 47,000 93,000
流度降低 >3,400 >13,000
水相对流度的倒数,md <0.09 <0.05
产生的铬浓度,ppm 10.9-5.1
以12cc/hr的速度注入0.21PV盐水
油饱和度,PV 0.168
流度,md/cp 0.33 0.21
相对流度的倒数,cp 27,000 43,000
流度降低 >1,900 >6,100
水相对渗透率,md <0.17 <0.10
产生的铬浓度,ppm 5.19-2.65
以48cc/hr的速度注入0.12PV盐水
油饱和度,PV 0.167
流度,md/cp 1.1 0.61
相对流度的倒数,cp 7,800 14,000
流度降低 >560 >2,100
水相对渗透率,md <0.57 <0.31
产生的铬浓度,ppm 2.94-1.38
以192cc/hr的速度注入0.24PV盐水
油饱和度,PV 0.165
流度,md/cp 3.4 1.6
相对流度的倒数,cp 2,600 5,600
流度降低 >190 >800
水相对渗透率,md <1.7 <0.80
产生的铬浓度,ppm 1.77-0.70
以38cc/hr的速度注入0.23PV盐水
油饱和度,PV 0.164
流度,md/cp 3.4 2.0
相对流度的倒数,cp 2,600 4,500
流度降低 >190 >640
水相对渗透率,md <1.7 <1.0
产生的铬浓度,ppm 1.15-0.87
盐水在55℃时的粘度=0.51cp
原油在55℃时的粘度=18.5cp
表2的最初水注入对岩芯中的原始油的采收率为61.5%。油饱和度从0.774PV降到0.298PV。用非流动的硬质凝胶处理后再进行水注入时最初驱出的油基本上不含水,并且多驱出了0.134PV油,占该处油的17.3%。
凝胶处理的结果使用水驱出的油含量增加。如表1和表2所示,凝胶几乎消除了油井附近水的相对渗透,并把油的相对渗透降低了很多。因此,油相对于注入水就更容易产出。直到可动的油饱合被驱出后,注入水才产出。
虽然前面已经阐述了本发明的最佳实施方案,但是,在本发明的范围内,可对本方法进行改良。