移动通信系统中处理分组数据.pdf

上传人:b*** 文档编号:1163107 上传时间:2018-04-03 格式:PDF 页数:58 大小:1.82MB
返回 下载 相关 举报
摘要
申请专利号:

CN99801423.0

申请日:

1999.07.16

公开号:

CN1275293A

公开日:

2000.11.29

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效申请日:1999.7.16|||公开

IPC分类号:

H04Q7/22; H04Q7/38; H04B7/26; H04J13/04; H04L1/20

主分类号:

H04Q7/22; H04Q7/38; H04B7/26; H04J13/04; H04L1/20

申请人:

三星电子株式会社;

发明人:

朴振秀; 金英基; 郑仲浩

地址:

韩国京畿道

优先权:

1998.07.16 KR 1998/28975; 1998.08.05 KR 1998/32352; 1998.08.14 KR 1998/33360

专利代理机构:

柳沈知识产权律师事务所

代理人:

马莹

PDF下载: PDF下载
内容摘要

一种移动通信系统的分组数据处理装置。基站包括:信道状态信息接收器,用于从移动台接收前向信道的信道状态信息;辅助信道发送控制器,用于根据该信道状态信息来确定该移动台的比特率;辅助信道发送器,用于以由辅助信道发送控制器确定的比特率向所述移动台发送数据;和速率指示符发送器,用于产生具有有关所确定的比特率信息的速率指示符,并将所产生的速率指示符发送到移动台。移动台包括:信道状态测量器,用于检测经一导频信道接收到的信号的功率,以测量信道状态;信道状态信息发送器,用于根据所测得的信道状态来产生信道状态信息,并将该信道状态信息发送到一基站;和辅助信道接收器,用于检测从该基站以一可变速率发送的数据的比特率,并以所检测到的比特率来接收数据。

权利要求书

1: 一种用于基站的分组数据处理装置,用于使码分多址(CDMA)移动通 信系统中的分组数据的通过量最大,所述装置包括: 信道状态信息接收器,用于从多个移动台接收前向信道的多个信道状态 信息; 辅助信道发送控制器,用于根据所述信道状态信息来确定每个移动台的 比特率;和 辅助信道发送器,用于以所确定的比特率向所述移动台发送数据。
2: 如权利要求1所述的分组数据处理装置,还包括速率指示符发送器, 用于产生具有有关所确定的比特率的信息的速率指示符,并将所产生的速率 指示符发送到所述移动台。
3: 如权利要求1所述的分组数据处理装置,其中,所述辅助信道发送 器产生具有有关所确定的比特率的信息的速率指示符,并在每个帧将所述速 率指示符插入发送数据中,以发送所述速率指示符。
4: 如权利要求1所述的分组数据处理装置,其中,通过分析从多个移 动台接收到的信道状态信息,来确定所述比特率,并集中地向具有最佳信道 条件的移动台分配发送功率。
5: 如权利要求1所述的分组数据处理装置,其中,通过分析所述信道 状态信息而计算一比特率,并将所计算出的比特率与一加权系数相乘,并确 定一最终比特率,来确定所述比特率。
6: 如权利要求1所述的分组数据处理装置,其中,所述比特率与表示 从所述移动台接收到的导频信号的强度的信道状态信息成反比,而与固定功 率成正比。
7: 如权利要求1所述的分组数据处理装置,还包括速率指示符发送器, 用于经分离的信道向所述移动台发送所确定的速率指示符。
8: 一种CDMA移动通信系统中用于移动台的分组数据处理装置,包 括: 信道状态测量器,用于检测经一导频信道接收到的信号的功率,以测量 信道状态; 信道状态信息发送器,用于根据所测得的信道状态来产生信道状态信 息,并将所述信道状态信息发送到一基站;和 辅助信道接收器,用于检测从所述基站以一可变速率发送的数据的比特 率,并以所检测到的比特率来接收数据。
9: 如权利要求8所述的分组数据处理装置,其中,所述辅助信道接收 器检测从所述基站发出的数据的比特率,以检测接收数据的比特率。
10: 如权利要求8所述的分组数据处理装置,其中,所述辅助信道接收 器采用盲目检测(blind detecting)来检测从所述基站发出的数据的比特率。
11: 一种在CDMA移动通信系统中用于移动台的分组数据处理装置,其 中一辅助信道以可变比特率发送数据,所述装置包括: 信道状态测量器,用于检测经一导频信道接收到的信号的功率以测量信 道状态; 信道状态信息发送器,用于根据所测得的信道状态来产生信道状态信 息,并将所述信道状态信息发送到一基站; 速率指示符接收器,用于检测从所述基站发出的数据的比特率;和 辅助信道接收器,用于以所检测到的比特率来接收数据。
12: 如权利要求11所述的分组数据处理装置,所述速率指示符接收器检 测与经分离的信道从基站发出的数据的比特率有关的信息。
13: 一种在CDMA通信系统中用于基站的分组数据处理方法,包括下列 步骤: 经一前向信道以预定的功率发送信号; 经一反向信道从一移动台接收用于所述前向信道的信道状态信息,并根 据所述信道状态信息来确定待发送到所述移动台的数据的比特率;和 以所确定的比特率向所述移动台发送数据。
14: 如权利要求13所述的分组数据处理方法,其中,所述前向信道是 公共导频信道。
15: 如权利要求13所述的分组数据处理方法,其中,所述前向信道是 业务信道。
16: 如权利要求13所述的分组数据处理方法,其中,所述反向信道是 反向导频信道。
17: 如权利要求13所述的分组数据处理方法,其中,所述反向信道是 信道状态报告信道。
18: 如权利要求17所述的分组数据处理方法,其中,所述信道状态报 告信道是沃尔什(Walsh)码信道。
19: 如权利要求14所述的分组数据处理方法,其中,在所述比特率确 定步骤中,通过分析从多个移动台接收到的信道状态信息来确定所述比特 率,并集中地向具有最佳信道条件的移动台分配发送功率。
20: 如权利要求19所述的分组数据处理方法,其中,所述比特率由下 式确定: [方程5] 给定 Σ i = 1 N BR ( i ) P b R ( i ) = P T ]]> 使 ( Σ i = 1 N BR ( i ) ) ]]> 最大。
21: 如权利要求14所述的分组数据处理方法,其中,在所述比特率确 定步骤中,通过分析从一移动台接收到的信道状态信息来计算一比特率,然 后通过将所计算出的比特率与一加权系数相乘来确定最终比特率。
22: 如权利要求21所述的分组数据处理方法,其中,以下式确定所述 比特率: [方程6] 给定 Σ i = 1 N BR ( i ) P b R ( i ) = P T ]]> 使 ( Σ i = 1 N w ( i ) BR ( i ) ) ]]> 最大。
23: 如权利要求14所述的分组数据处理方法,其中,所述比特率与表 示从所述移动台接收到的导频信号的强度的信道状态信息成反比,而与固定 功率成正比。
24: 如权利要求23所述的分组数据处理方法,其中,所述比特率由下 式确定: [方程7] 等价比特率=K·(功率)·(公共导频信号的强度) 其中,K是常数。
25: 如权利要求20所述的分组数据处理方法,还包括这样一步骤,产 生具有有关所确定的比特率的信息的速率指示符,并经一前向信道将所产生 的速率指示符发送到所述移动台。
26: 如权利要求25所述的分组数据处理方法,其中,在所述比特率产 生步骤中,通过在所确定的比特率为最大比特率时指定一元沃尔什码,并且 在所确定的比特率为所述最大比特率的1/N时重复所述元沃尔什码,来产生 所述比特率。
27: 一种在CDMA移动通信系统中用于移动台的分组数据处理方法,包 括下列步骤: 经一前向信道从一基站接收信号,并产生所述前向信道的信道状态信 息; 经一反向信道向所述基站发送所述信道状态信息;和 响应于所述信道状态信息,检测所述基站已以一可变速率发送的数据的 比特率。
28: 如权利要求27所述的分组数据处理方法,其中所述前向信道是公 共导频信道。
29: 如权利要求27所述的分组数据处理方法,其中,所述前向信道是 业务信道。
30: 如权利要求28所述的分组数据处理方法,其中,所述信道状态信 息产生步骤包括下列步骤: 检测经所述导频信道接收到的导频信号的功率以及所述功率的变化 量;和 根据所述功率和所述功率的变化量来产生一信道状态信息比特。
31: 如权利要求30所述的分组数据处理方法,其中,所述信道状态信 息比特产生步骤包括下列步骤: 计算先前的信道状态信息比特的累加值; 将所述累加值与一差值进行比较,所述差值是通过从所测得的所述导频 信号的功率值减去一参考值而得到的;和 当所述差值大于所述累加值时,将所述信道状态信息比特设定为+1, 而当所述差值小于所述累加值时,将所述信道状态信息比特设定为-1。
32: 如权利要求31所述的分组数据处理方法,其中,所述信道状态信 息比特的累加值由下式确定: [方程8] T ( i ) = Σ j = 1 - N i - 1 [ e - a ( i - j ) CBS ( j ) ] ]]>
33: 如权利要求29所述的分组数据处理方法,其中,所述信道状态信 息产生步骤包括下列步骤: 检测经所述业务信道接收到的业务信号的功率;和 根据所检测到的业务信号功率来产生一功率控制比特。
34: 如权利要求27所述的分组数据处理方法,其中,通过盲目检测来 确定以可变速率接收到的数据的比特率。
35: 如权利要求34所述的分组数据处理方法,其中,通过检测可能的 比特率的数据来执行所述盲目检测,以选择经循环冗余码(CRC)校验的比特 率。
36: 一种在移动通信系统中使分组数据的通过量最大的方法,其中所述 移动通信系统包括网络、基站控制器、基站和移动台,所述方法包括下列步 骤: (a)当产生要提供给所述移动台数据时,所述基站控制器经所述网络接收 所述数据,并将所述数据发送到所述基站; (b)当从所述基站控制器接收到数据时,所述基站根据从所述移动台周期 地接收到的信道状态信息来确定要发送到所述移动台的数据的比特率,并以 所确定的比特率将所述数据发送到所述移动台;和 (c)所述移动台经一前向信道从所述基站接收一基站信号,根据所接收到 的基站信号的功率来产生信道状态信息,将所述信道状态信息周期地发送到 所述基站,并根据所述信道状态信息接收所述基站发送的数据。
37: 如权利要求36所述的方法,其中,所述步骤(a)包括下列步骤: 当产生要被提供给所述移动台的数据时,经所述网络接收所述数据; 当接收数据时,从属于所述移动台所处的一基站组的各个基站接收信道 状态信息; 根据所述信道状态信息,确定能够为所述移动台提供服务的各个基站; 和 向所确定的基站发送数据。
38: 如权利要求37所述的方法,其中,发送到各个基站的数据是相同 数据。
39: 如权利要求37所述的方法,其中,发送到各个基站的数据是通过 分割经所述网络接收到的数据而提供的不同数据。
40: 如权利要求36所述的方法,其中,所述步骤(b)包括下列步骤: 从所述移动台周期地接收信道状态信息;和 为所述移动台分配发送功率,并确定所述移动台的比特率,以根据所确 定的发送功率和比特率发送数据。
41: 如权利要求40所述的方法,其中,在所述发送功率分配步骤中, 根据按照表示较好的信道条件的信道状态信息次序确定的优先级来给各个 移动台分配所述发送功率。
42: 如权利要求40所述的方法,其中,在所述发送功率分配步骤中, 给所述各个移动台分配固定功率。
43: 如权利要求40所述的方法,其中,在所述比特率确定步骤中,根 据所接收到的信道状态信息,在每个帧重新确定所述比特率。
44: 如权利要求43所述的方法,其中,对于更好的信道条件,将所述 比特率确定为更高。
45: 如权利要求36所述的方法,其中,有关所确定的比特率的信息由 所述基站经具有固定速率的一分离的比特率指示信道发送到所述移动台。
46: 如权利要求36所述的方法,其中,所述基站将具有有关所确定的 比特率的信息的速率指示符插入一用于发送数据的辅助信道中,以将所述速 率指示符发送到所述移动台。
47: 如权利要求46所述的方法,其中,所述辅助信道的帧长度是1.25 或2.5ms。

说明书


移动通信系统中处理分组数据

    本发明背景

    【发明领域】

    本发明涉及一种移动无线电通信系统,尤其涉及一种通过根据基站和移动台之间的信道条件及所需服务品质(QoS)改变功率和比特率来处理数据的方法。

    2.相关技术描述

    IS-95标准支持称作电路服务的实时话音数据服务。通常,在电路服务会话期间,在扩展的时段内给移动台指定专用业务和控制信道,从这意义上,可将电路服务看成是分组服务的特殊情况。这将导致空中接口容量的使用效率较低。但是,诸如视频应用的一些对延迟敏感的服务在呼叫期间需要专用信道。电路服务可具有连续发送输入的电路数据的特点。与IS-95标准相比,支持高比特率的基于IMT-2000标准的移动通信系统能够采用辅助信道提供诸如运动画面和图像的大数据量的分组数据服务。该分组数据是作为不连续突发数据而发送的,而基于IS-95标准的电路数据是作为连续话音数据发送的。另外,对于由IMT-2000标准定义的分组数据服务,需要在满足用户所需各种比特率的情况下使通过量(throughout)最大。相反,在IS-95中,对于话音服务器,需要给所有用户提供均匀的服务,而不管信道条件如何。为了满足IS-95均匀服务需求,系统在不良信道条件下给移动台提供更高地功率。然而,这种方法不能用来使分组数据服务的数据通过量最大。

    当将电路服务的连续数据处理方法应用于不连续地发送数据的分组服务时,难以使分组数据的比特率最大,从而降低了数据处理效率和信道效率。

    另外,甚至在越区切换期间也引起前述数据处理问题。亦即,现有提供电路服务的移动通信系统中的越区切换方法组合或选择从进行越区切换的至少两个移动台同时发送的相同数据。当将越区切换方法应用于分组服务时,难以根据信道条件来自适应地优化比特率,从而引起分组通过量的降低。因此,为了提供分组数据服务,应重新设计数据发送方法和越区切换方法,使之满足分组数据的发送特性。尤其是,需要一种用于给移动台分配前向链路功率并建立经过基站的数据路径的新方法。

    本发明概述

    因此,本发明的一个目的是提供一种移动通信系统中分组数据通信的数据处理方法,其中,移动台采用从基站发送的信号来估计信道条件,并将信道状态信息发送给基站,然后,基站根据该信道状态信息向处于良好信道条件的移动台分配较高的功率,并采用所分配的功率向移动台发送数据。

    本发明的另一目的是提供一种移动通信系统中分组数据通信的数据处理方法,其中,移动台采用从基站发送的信号来估计信道条件,并将信道状态信息发送给基站,然后,基站根据该信道状态信息以较高的比特率向处于良好信道条件的移动台发送数据。

    本发明的又一目的是提供一种分组数据通信的数据处理方法,其中,移动台向基站发送信道状态信息,并接收基站响应于该信道状态信息发送的具有速率指示符的数据,从而快速适应可变比特率。

    本发明的又一目的是提供一种移动通信系统中分组数据通信的数据处理方法,其中,移动台根据对应于服务数据类型的加权系数来确定比特率和功率。

    本发明的又一目的是提供一种移动通信系统中分组数据通信的数据处理方法,其中,为了使越区切换期间分组数据的通过量最大,基站控制器向涉及越区切换处理的基站发送所分割的不同数据,基站接收信道状态信息,并且仅当信道处于良好条件下基站才向移动台发送分组数据。

    本发明的又一目的是提供一种移动通信系统中分组数据通信的数据处理方法,其中,为了使越区切换期间分组数据的通过量最大,基站控制器向涉及越区切换处理的基站发送相同数据,基站接收信道状态信息,并且仅当信道处于良好条件下基站才向移动台发送分组数据。

    为了实现上述目的,提供了一种移动通信系统的分组数据处理装置。基站包括:信道状态信息接收机,用于从移动台接收前向信道的信道状态信息;辅助信道发送控制器,用于根据该信道状态信息来确定移动台的比特率;辅助信道发射机,用于以由该辅助信道发送控制器确定的比特率向移动台发送数据;及速率指示符发射机,用于产生具有有关所确定比特率的信息的速率指示符,并将所产生的速率指示符发送到移动台。移动台包括:信道状态测量器,用于检测经导频信道接收到的信号的功率,以测量信道状态;信道状态信息发射机,用于根据测得的信道状态产生信道状态信息,并将该信道状态信息发送到基站;及辅助信道接收机,用于检测从基站以可变速率发送的数据的比特率,并以测得的比特率接收数据。

    附图简述

    通过参照附图的如下详细描述,本发明的上述和其他目的、特征和优点将变得更加清楚,附图中的相同标号表示相同部件。附图中:

    图1的示意图表示根据本发明一实施例、应用了越区切换方法的移动通信系统;

    图2的示意图表示根据本发明一实施例基站、根据从移动台接收到的信道状态信息向移动台发送分组数据的过程;

    图3是表示根据本发明一实施例基站的信道卡的示意图;

    图4的示意图表示根据本发明第一实施例、其中将分割的不同数据发送到两个基站的越区切换方法;

    图5的示意图表示根据本发明一实施例、用于接收分割的不同数据的移动台指状部件结构;

    图6的示意图表示根据本发明一实施例、在越区切换期间的信道状态报告过程;

    图7A至7D的示意图表示分别在基站控制器、基站和移动台中执行的根据本发明第一实施例的越区切换方法;

    图8的示意图表示根据本发明一实施例、发送存储在两个基站的缓冲器中的分割的不同数据的方法;

    图9的示意图表示根据本发明一实施例、在另一基站具有不良信道条件时将延迟数据转发到一基站的方法;

    图10的示意图表示根据本发明一实施例、在其中一个基站处于不良信道条件下发送预备的相反数据(opposite data)的方法;

    图11的示意图表示根据本发明第二实施例、其中向两个基站发送相同数据的越区切换方法;

    图12的示意图表示根据本发明一实施例、移动台经用于报告信道状态的反向信道发送到基站的帧结构;

    图13的示意图表示根据本发明一实施例、发送存储在两个基站的缓冲器中的相同数据的方法;

    图14的示意图表示根据本发明一实施例、用于检测数据发送点的方法;

    图15A至15C的流程图表示根据本发明一实施例、用于向至少两个基站发送相同数据的越区切换方法;

    图16的流程图表示根据本发明一实施例、当两个基站之一未能发送数据时重发发送失败的数据的第一方法;

    图17的流程图表示根据本发明一实施例、当两个基站之一未能发送数据时重发发送失败的数据的第二方法;

    图18A至18C的流程图表示分别在基站控制器、基站和移动台中执行的图16的第一数据重发方法;

    图19A的示意图表示根据本发明一实施例、用于将速率指示符插入到用于发送用户数据的辅助信道中的方法;

    图19B的示意图表示根据本发明一实施例、用于将速率指示符插入到分离信道的方法;

    图20的示意图表示根据本发明一实施例、其结构为支持有效的前向分组发送的基站和移动台;

    图21的流程图表示根据本发明一实施例、用于将速率指示符插入数据的基站的操作;

    图22的流程图表示根据本发明一实施例的移动台的操作;

    图23的流程图表示根据本发明一实施例、移动台的信道状态报告过程;及

    图24的流程图表示根据本发明一实施例、基站的速率确定过程。

    优选实施例的详细描述

    下面将参照附图来描述本发明的优选实施例。在下面的描述中,将不对所熟知的功能或结构进行详细描述,因为它们不必要的细节可使本发明模糊。本发明的优选实施例可一般限定如下。

    为了使分组数据的通过量最大,移动台(MS)接收从基站(BS)发送的信号,以检测至基站的信道的条件,并将相应的信道状态信息发送到基站。一旦从多个移动台接收到信道状态信息,基站便根据至各移动台的各信道条件以不同的比特率向各移动台发送分组数据。下面将参照图2来进行详细描述。

    参照图2,根据本发明一实施例,移动通信系统由多个移动台109-111构成,每个移动台均与基站105进行通信,基站105根据从各移动台接收到的信道状态信息向移动台109-111发送分组数据。

    图2表示的是在分组服务期间各移动台向一基站报告前向信道条件(即CH STATUS)的状态。前向信道可以是导频信道或业务信道。导频信道是基站通过其向移动台发送导频信号的公共信道,并且能够使移动台执行连续的信道状态监测。移动台测量导频信道或业务信道的功率,以产生信道状态信息。

    信道状态信息随用于测量的目标信道、信道测量方法、对测量值的编码方法、信息比特数目发生变化。另外,用于将信道状态信息从移动台发送到基站的方法也可改变。这里,将参考其几个实施例。

    例如,该信道状态信息可以是通过检测导频信道功率或其功率变化而产生的信道状态信息。将在后面详细描述用于产生信道状态信息比特的方法。

    另一例子为,该信道状态信息可以是功率控制比特。移动台可以通过测量业务信道或导频信道的功率来产生功率控制比特。上述用于在移动台上根据导频功率的测量值来产生功率控制比特的方法可参见本发明的申请人提出的韩国专利申请第98-22219号,该申请完全引用于此,以资参考。移动台可通过反向导频信道发送用于信道状态报告的功率控制比特。

    对于对信道状态(或条件)变化的快速自适应,采用1.25ms或2.5ms帧,它的长度比电路服务时的20ms或5ms帧的短。尤其是,对于以高速率发送分组数据的辅助信道,可采用1.25ms帧。另外,对于发送用于信道状态报告目的的信息来替代在反向信道上发送每1.25ms 800Hz的一个比特(或功率控制比特),可采用一种方法来在1.25ms期间发送几个表示多个电平的比特,或以更高速率均等地发送单个比特。亦即,除了在反向信道上发送现有的800Hz功率控制比特之外,还可以9.6Kbps、4.8Kbps、2.4Kbps或1.2Kbps的速率在反向信道上发送信道状态信息。用于发送信道状态信息的反向信道可以是反向专用控制信道或分离的状态报告信道。分离的状态报告信道可以是分离的沃尔什(Walsh)码信道。对于信道状态信息的快速应用,信道状态报告信道最好在不进行信道编码的情况下发送。例如,在当以4.8Kbps发送多电平比特时,由于每1.25ms可发送6个信息比特,因此,可采用64个电平构成信道状态报告,与采用现有的2个电平的情况相比,这要精确的多。另外,当以4.8Kbps发送表示为1的各个比特时,在比1.25ms短的每0.208ms上通过监测信道状态来更新表示信道状态的值。在以高速率发送信道状态信息时,可应用多种编码技术,从而有效地使用表示信道状态信息的比特。

    对于发送信道状态信息而言,移动台可采用这样一种方法,该方法将测量到的前向信道上的导频信号的强度表示为N个信道状态信息比特与在对过去的信道状态信息比特进行求和时所采用的加权系数的累加值。亦即,当前(即,在时间T1)测量到的导频信号的功率值与参考值之间的差值T(i),即在当前时刻确定的信道状态信息比特(CBS),可由下式表示:

    [方程1]T(i)=Σj=1-Ni-1[e-a(i-j)CBS(j)]]]>

    其中,CBS(j)表示时刻.j的信道状态信息比特,“a”表示大于或等于0的常数。因此,为了在当前时刻T1产生新的信道状态信息比特CBS(i),将新信道状态信息比特CBS(i)确定为+1或-1,从而包括新信道状态信息比特CBS(i)的N个先前信道状态信息比特的总和T(i+1)更接近于公共导频信号的测量值。这里,e-a(i-j)项表示在对过去的信道状态信息比特求和时所采用的加权系数;当“a”大于0时,采用更多衰减的加权系数来对更多过去的比特的进行求和,而当“a”为0时,采用相同的加权系数对所有信道状态信息比特进行求和。当移动台向基站发送如上所述地产生的信道状态信息比特以进行信道状态报告时,基站根据方程1来累加所接收到的信道状态信息比特,以确定信道状态。这种信道状态信息表示方法的优势在于,即使有一个或多个信道状态信息比特为错的,差错也不累加,从而在经过给定数目的信道状态信息比特之后,信道状态信息比特被恢复到正常状态。

    可采用ADPCM(自适应差分脉码调制)来作为另一种信道状态信息表示方法,该方法对根据先前的样本自适应地估计的样本值与实际样本值之间的差值进行编码。由于该方法为本领域所熟知,因此这里将不对其进行描述。

    可采用DM(增量调制)来作为另一种信道状态信息表示方法,该方法将根据先前的样本估计的样本值与实际样本值之间的差值编码成一个比特。由于该方法为本领域所熟知,因此这里将不对其进行描述。

    为了快速适应信道状态,可如上所述地采用1.25ms帧。但是,可根据所选比特率来改变帧长度。例如,对于相对低的比特率(如9.6Kbps),可采用20ms帧;对于中间的比特率(如38.4Kbps),可采用5ms帧;而对于相对高的比特率(如307.2Kbps),可采用1.25ms帧。表1表示的是基于比特率和帧长度的每帧的比特数。表1中,阴影块中的黑体字符表示对于能够被支持的速率和帧长度的组合的每帧比特数。

    表1  速率[Kbps]    20ms    5ms    1.25ms    9.6    192    48    12    19.2    384    96    24    38.4    768    192    48    76.8    1536    384    96    153.6    3072    768    192    307.2    6144    1536    394

    在描述在两个或多个基站之间执行的越区切换之前,将首先参照图2来描述基站的操作。由于各基站执行相同的操作,因此,为了简便,仅对基站105的操作进行描述。

    为了使分组数据通过量最大,在数据发送期间,如图2所示,基站105每帧从移动台109和111接收相应的前向信道的信道状态报告。基站105应根据由移动台估计的信道条件来确定与其形成无线电链路的每个移动台的功率分配以及比特率。下面将描述用于确定各移动台的功率分配和比特率的方法。用于确定功率分配和比特率的方法可分为如下3个子方法:

    在用于确定功率分配和比特率的第一种方法中,当从移动台接收到前向信道的FWD_CH的信道状态报告时,在下一个帧期间,基站105集中地将其发送功率分配给多个移动台中处于最佳信道条件的移动台,即基站能够向其以最低发送功率提供最高比特率的移动台。例如,在图2中,当移动台109处于比移动台111更好的信道条件时,基站105将其在下一个帧的发送功率集中在经辅助信道发送给移动台109的数据上。

    更具体地讲。当从移动台109和111接收到信道状态报告时,基站105计算以1Kbps的速率向各移动台109和111发送数据所需的功率值,所计算出的功率值基于从报告其各信道状态的每个移动台发送的功率控制比特的累加值。这里,基站105的总发送功率是通过将移动台109和111的比特率与用于将数据以1Kbps发送到移动台109和111的功率值相乘而得到的移动台109和111的各值之和。在这种条件下,基站105分配功率,以使移动台109和111的比特率之和最大。这样,可将总功率分配给处于最佳信道条件的移动台109,即,基站105能够向其在1Kbps下以最低功率发送数据的移动台109。这种功率分配每个帧上重新执行一次。在算术表达式中,当基站的总发送功率为PT=P1+P2+...+PN(其中,P1、P2、...和PN分别表示移动台1、2、...和N的功率)时,其目的是计算使各移动台的比特率之和BR(1)+BR(2)+...+BR(N)最大的向量P={P1,P2,...,PN}。对于各个链路,以1Kbps发送数据所需的功率(或Eb/No),pbR(i)是基站已知的值。从基站一方来看,通过量的最大值可定义为:

    [方程2]

    给定Σi=1NBR(i)PbR(i)=PT]]>

    使(Σi=1NBR(i))]]>最大。

    方程2的通解是,对于使PbR(i)值最小的i和k,Pk=PT,而对其余的i,Pi(*k)=0。如果满足给定条件BR(k)PbR(k)=PT的比特率BR(k)超过最大可允许比特率BRmax,则具有最小PbR(i)的移动台的功率Pk被设置成BRmax·PbR(k)。亦即,比特率被设置成BRmax,而其余功率(PT-Pk)被分配给其PbR(i)具有下一低值的移动台。

    取决于信道条件的基站的功率分配在良好的信道条件下增大移动台109的比特率,而在差的信道条件下降低移动台111的比特率。

    在所提出的解决该问题的第二个方法中,基站这样分配其功率,即,使得取决于信道条件、与取决于移动台的服务品质(QoS)的加权系数相乘的比特率最大。该加权系数是根据各移动台所需的QoS来确定的。这可根据下面的方程来优化:

    [方程3]

    给定Σi=1NBR(i)PbR(i)=PT]]>

    使(Σi=1Nw(i)BR(i))]]>最大。

    基站根据该最大化公式来分配功率,然后以可能的比特率BR(i)=Pi/PbR(i)并以分配给移动台i的功率发送数据。

    在第三种方法中,基站105向各移动台分配固定功率,然后根据被实时监测的信道条件来可变地设置比特率。当接收到前向信道FWD_CH的信道状态报告时,在下一帧期间,通过辅助信道,基站105以较高的比特率向处于良好的信道条件的移动台发送数据,而以较低的比特率向信道条件差的移动台发送数据。例如,图2中,如果移动台109的信道条件良好,则基站105以较高的比特率向移动台109发送数据,而以较低的比特率向信道条件相对较差的移动台111发送数据。

    更具体地讲,在第三种功率分配和比特率确定方法中,基站给各移动台分配相同的固定功率电平。当从移动台109和111接收到信道状态报告时,基站105根据该信道状态报告来计算各移动台109和111的比特率。例如,可根据从报告信道状态的移动台发出的功率控制比特的累加值和分配给移动台的固定功率来确定比特率。更具体地讲,所确定的比特率与所分配的固定功率成正比而与功率控制比特的累加值成反比。这里,功率控制比特的累加值根据信道条件每个帧更新一次,而比特率也根据信道条件每个帧更新一次。

    当自适应地确定了要在每帧发送的比特率时,基站采用在前一帧分配给目标移动台的固定功率和从目标移动台接收到的信道状态信息。该信道状态信息例如可以是公共导频信号的强度。可变比特率被定义为等价比特率(parbit rate),可表示如下:

    [方程4]

    等价比特率=K·(功率)·(公共导频信号的强度)

    其中,K是常数,公共导频信号的强度与功率控制比特的累加值成反比。

    如上所述,当基站在一帧内以分配的功率向移动台发送数据时,根据信道条件来自适应地确定比特率。

    当如上所述自适应地确定比特率时,移动台应检测可变比特率以接收数据。移动台可采用如下两种方法来检测可变比特率。

    在第一种方法中,移动台可执行盲目检测来接收可变速率的数据。对于盲目检测而言,移动台对所有可能的比特率执行数据检测,然后选择CRC(循环冗余码)校验速率的数据。

    在第二种方法中,基站经前向信道向移动台发送比特率信息。基站可经用于发送用户数据的辅助信道来发送速率指示符,如图19A所示。速率指示符可包括插入到数据帧预定位置的几个速率指示符比特。这里,该速率指示符比特可以以固定周期(或以固定速率)发送,也可分散地定位于帧中,以获得时分交换分集效果。更具体地讲,基站将速率指示符比特插入经辅助信道发送的帧数据中,以发送速率指示符比特。为了在每个帧中插入速率指示符,需要用于产生速率指示符的装置和用于插入速率指示符的装置。

    例如,用于产生速率指示符的装置以如下方法来产生速率指示符。

    基站可包括发送到移动台的具有速率指示符的相应沃尔什码信息。该沃尔什码被用来分离前向信道;长度最短的元沃尔什码在最高比特率下使用。在为最高比特率的1/N的较低比特率下,采用根据特定模式重复N次的该元沃尔什码或倒置(逆)元沃尔什码。因此,基站可在开始服务时预先为移动台指定元沃尔什码,并在每帧发送元沃尔什码的重复模式信息和速率指示符。然后,移动台根据重复模式来组合通过将该元沃尔什码与接收信号相乘而得到的元符号值,以确定与该速率匹配的符号值。例如,被指定元沃尔什码“+1+1-1-1”的移动台将“+1+1-1-1”与接收到的4码片信号顺序相乘,并对相乘信号进行积分,以获得元符号S1。移动台再次将“+1+1-1-1”与接下来接收到的4码片信号顺序相乘,对相乘信号进行积分,以获得元符号S2。另外,移动台检测速率信息,并分析检测到的速率信息。如果分析结果是速率为最高速率的1/2并且重复模式为“+1+1”,则移动台将相应速率的符号值确定为S1+S2。另外,当重复模式为“+1-1”时,移动台将相应速率的符号值确定为S1-S2。在另一种沃尔什码指定方法中,基站可在开始服务时给各移动台指定对应于最低速率的最长沃尔什码,并采用通过组合上层沃尔什码而得到的下层沃尔什码来指定其中一个移动台,从而以高于最低速率的速率使用作为最长沃尔什码的元素的上层沃尔什码。这里,移动台可根据速率信息来唯一地检测相应的的沃尔什码。

    当采用几个帧长度时,基站能够经专用控制信道消息来向移动台通知所使用的帧长度。当根据速率唯一地确定该帧长度时,可仅根据速率指示符来区分帧长度而无需单独的帧长度指示。

    另外,可使用多路复用器作为用于将速率指示符插入辅助信道上的帧数据的装置。

    图20表示根据本发明实施例被构成为执行有效前向分组数据发送的基站和移动台。

    参照图20,标号200表示基站,而标号300表示移动台。基站200包括辅助信道发送控制器205、公共导频发送器201、信道状态信息接收器203、速率指示符发送器207和辅助信道发送器209。公共导频发送器201在前向导频信道上连续发送公共导频信号。信道状态信息接收器203响应于该公共导频信号接收由基站发送的信道状态报告,并将信道状态信息提供给辅助信道发送控制器205。当从信道状态信息接收器203接收到信道状态信息时,辅助信道发送控制器205确定要被发送到已做出信道状态报告的移动台的数据的功率、帧长度和比特率。辅助信道发送控制器205使得辅助信道发送器209采用所确定的功率、帧长度和比特率发送数据。辅助信道发送器209在辅助信道发送控制器205的控制下发送数据。通过如图19A所示地在数据中插入速率指示符,基站可发送速率指示符以及发送数据。另外,基站200可包括速率指示符发送器207,用于在分离的信道上发送该速率指示符。在辅助信道发送控制器205的控制下,速率指示符发送器207产生一速率指示符,并经采用分离的沃尔什码扩频的信道发送所产生的速率指示符。该速率指示符可包括有关比特率、沃尔什码号和沃尔什码长度的信息。

    移动台300包括信道状态测量器301、信道状态信息发送器303、速率指示符接收器305、和辅助信道接收器307。经前向公共导频信道接收导频信号的信道状态测量器301测量接收到的导频信号的强度,并将信道状态信息提供给信道状态信息发送器303。信道状态信息发送器303向基站200发送从信道状态测量器301提供的信道状态信息。辅助信道接收器307从接收信号检测帧长度和比特率,并采用所检测到的帧长度和比特率来接收数据。

    图21表示根据本发明实施例基站将一速率指示符插入数据中以便发送的过程。

    参照图21,在步骤400,基站采用公共导频发送器201产生公共导频信号,并经前向导频信道发送所产生的公共导频信号。在步骤402,采用信道状态信息接收器203,基站接收从移动台发送的信道状态信息。当从移动台接收到信道状态信息时,在步骤404,基站检查图3的信道卡缓冲器,以确定是否有任何缓冲数据要发送到移动台。在步骤406,当有要发送到移动台的数据时,基站根据在步骤402接收到的信道状态信息来确定数据的功率、帧长度和比特率。当确定功率、帧长度和比特率时,在步骤408,基站采用辅助信道发送器209发送数据。这里,基站可优化地将一速率指示符插入数据中,以发送该速率指示符。

    图22是表示根据本发明实施例移动台操作的流程图。参照图22,在步骤502,移动台采用信道状态测量器301测量经公共导频信道接收到的公共导频信号的强度。在测量公共导频信号强度之后,在步骤504,移动台控制信道状态测量器以产生信道状态信息。在步骤506,所产生的信道状态信息由信道状态信息发送器303发送给基站。在发送信道状态信息之后,移动台在步骤508监测辅助信道,以确定是否从基站接收到数据。当经辅助信道接收到数据时,移动台在步骤510从接收数据检测比特率指示符,然后,在步骤512,根据所检测的比特率来对接收数据执行解调和解码。

    另一种方法是,基站可经分离的信道发送速率指示符,如图19B所示。在这种情况下,基站应包括速率指示符发送器207,用于在辅助信道发送控制器205的控制下,经分离的信道向移动台发送比特率指示符。该分离的信道可以是采用分离的代码的速率指示信道。

    另外,移动台应包括速率指示符接收器305,它经分离的信道从基站中的速率指示符发送器207接收速率指示符,并通过分析该速率指示符来检测要接收的数据的功率、帧长度和比特率。速率指示符接收器305向辅助信道接收器307提供有关接收到的功率、帧长度和比特率的信息。然后,辅助信道接收器307根据该帧长度和比特率来接收数据,并对接收数据执行解调和解码。

    图23表示移动台的信道状态报告过程。这里,将对信道状态信息由一信道状态信息比特表示的实施例进行描述。在步骤520a,移动台接收公共导频信号,以测量所接收到的公共导频信道信号的强度。此后,在步骤520b,移动台根据方程1计算N个先前信道状态信息比特的累加值T。接下来,在步骤520c,移动台将计算值T与通过从公共导频信号的测量值减去参考值而得到的差值进行比较。当差值大于值T时,在步骤520d,移动台将信道状态信息比特设置成+1。反之,当差值不大于值T时,在步骤520e,移动台将信道状态信息比特设置成-1。此后,在步骤520f,移动台向基站发送信道状态信息比特。

    图24表示基站的速率确定过程。在图24中,假设存在3个速率RATE1、RATE2和RATE3,其中RATE3>RATE2>RATE1。但实际上,本发明范围内可采用其他速率。另外,假设信道状态信息由信道状态信息比特表示。

    参照图24,在步骤410a,基站累加从移动台接收到的N个先前的信道状态信息比特,以提取有关公共导频信号强度的信息。在步骤410b,在提取信道状态信息之后,基站采用该信道状态信息来确定速率。为了确定速率,基站首先计算一等价速率,该等价速率与发送功率和公共导频信号的强度成比例。亦即,等价速率=K*(发送功率)*(公共导频信号强度),其中K是比例常数。此后,在步骤410c,确定所计算出的等价速率是否高于或等于最高速率RATE3。当该等价速率不高于或等于最高速率RATE3时,在步骤410g确定该等价速率是否高于第二最高速率RATE2。当该等价速率不高于或等于第二最高速率RATE2时,在步骤410j确定该等价速率是否高于第三最高速率RATE1。另外,当该等价速率不高于或等于第三最高速率RATE3时,在步骤410m,将比特率设定为“0”,即,意味着不发送数据。

    反之,当该等价速率高于或等于前述速率之一(即,RATE1、RARE2、RATE3)时,处理过程进到步骤410d、410h和410k之一。在步骤410d、410h和410k中,确定是否可将一沃尔什码指定给相应速率。当可将一沃尔什码指定给相应速率时,在步骤410f、410j和410l,将该相应速率确定为可容许速率。但是,当不能将该沃尔什码指定给该相应速率时,确定是否可将该沃尔什码指定给低于上述速率的一速率。当将该沃尔什码指定给一低速率时,将该速率定义为可容许速率。在确定可容许速率之后,在步骤410n,基站指定该沃尔什码。

    图3表示基站中的信道卡,用于指定比特率和发送功率。参照图3,基站信道卡缓冲器113存储要发送给处于服务中的各移动台的数据。在图3中,基站信道卡为N个移动台提供服务。缓冲器控制器115根据来自上层的命令来控制卡缓冲器113的数据读/写操作。对缓冲器控制操作的详细描述将在后面描述。开关阵列117包括对应于各移动台MA1-MSN的N个开关。开关控制器119控制构成开关阵列117的各个开关的通/断(ON/OFF)操作,以仅在特定时段向特定移动台输出数据。开关阵列117也用于当由于信道条件差而不能发送数据时关闭输出。增益乘法器121将从开关阵列117输出的对应于各移动台的数据与增益pi1/2+Gi(i=1,2,...,N)相乘。乘以单位功率信号的pi1/2是一增益值,用于将各移动台的输出功率与Pi相乘。分配给每个移动台(i=1,2,...,N)以用于发送的功率Pi可以是变量或固定值。另外,基站可执行功率控制,从而更精确地使指定给移动台的发送功率适应特定信道。Gi是用于功率控制的增益值,它或者是零,或者是负值。由于所分配的功率具有最大值,因此,Gi应小于0,以便减小最大功率值。因此,对应于第i个移动台的第i个增益的范围在0和pi1/2之间。特别是,当帧长度短,并且在每个帧上更新Pi时,最好不执行功率控制,即,最好将Gi设置成0,而将增益设置成pi1/2。从增益乘法器121输出的乘上了增益的信号被应用于扩频器123,该扩频器123将该乘上了增益的信号与  用于CDMA(码分多址)发送的不同扩频码相乘,并将输出信号提供给加法器125。加法器125将从扩频器123输出的信号相加,以输出发送信号。

    至此,已对基站从移动台接收信道状态报告、并根据该信道状态报告确定要发送给移动台的分组数据的功率和比特率的各实施例进行了描述。下面将描述在越区切换期间进行的分组数据处理操作。

    图1表示应用本发明的移动通信系统。参照图1,当移动台109位于基站105和108的服务区之间的边界时,移动台109在执行软切换时与移动台105和107同时进行通信。为了执行越区切换,移动通信系统包括网络101、基站控制器(BSC)103、连接到基站控制器103的基站105和107、及移动台109。当需要向移动台109发送数据时,网络101向基站控制器103发送数据。然后,基站控制器103将从网络101接收到的数据发送给为移动台109提供服务的各个基站。这里,基站数目可以多于1。图1表示了可为移动台109提供服务的两个基站105和107的情况。基站105和107将从基站控制器103接收到的数据经相应的无线电信道发送到移动台109。

    下面,将描述用于当一移动台从两个以上的基站接受服务时执行越区切换的方法。

    根据本发明实施例的越区切换方法可分成两个阶段,第一阶段是将要被发送的数据分成两个不同的数据流,以便将这些不同的数据流同时发送到两个基站,第二阶段是给两个基站发送相同数据。

    根据第一阶段(即,数据划分),当从网络101接收到要发送给移动台109的数据时,基站控制器103将原始数据分成不同的数据流DATA1和DATA2,并将第一数据流DATA1发送给基站105,而将第二数据流DATA2发送给基站107,如图4所示。然后,基站105和107分别将所接收到的第一和第二数据流DATA1和DATA2发送给移动台109。移动台109重新组合从各基站105和107接收到的第一和第二数据流DATA1和DATA2,以恢复从网络101发出的原始数据流。

    图5表示移动台的接收机,用于接收上述数据流(DATA1和DATA2)。参照图5,移动台包括多个指状部件(finger),用于同时接收由两个以上的基站发出的信号。由于指状部件的结构在本领域内是已知的,因此将不对其进行描述。

    参照图5,接收机经第一延迟器131和第二延迟器132在第一指状部件135和第二指状部件136上接收从基站105发出的第一数据DATA1,各延迟器的延迟时间由相应的搜索器(未示出)设定。第一和第二指状部件135和136被提供有唯一解扩码PN1,以对第一数据DATA1进行解扩。另外,接收机经第三延迟器133和第四延迟器134在第一指状部件137和第二指状部件138上接收从基站107发出的第二数据DATA2,各延迟器的延迟时间由相应的搜索器设定。第三和第四指状部件137和138被提供有唯一解扩码PN2,以对第二数据DATA2进行解扩。从第一和第二指状部件135和136输出的解扩数据DATA1由加法器139相加,并经第一符号确定器141和第一解码器143恢复为原始数据DATA1。另外,从第三和第四指状部件137和138输出的解扩数据DATA2由加法器140相加,并经第二符号确定器142和第二解码器144恢复为原始数据DATA2。

    在越区切换期间,移动台经反向信道发送信道状态信息,以向基站作出信道状态报告。对于信道状态报告,移动台可采用非对称功率控制方法,其中,基站采用多个功率控制比特向多个基站发送不同的信道状态信息。反向信道上的每个功率控制组包括各基站的一些单独的功率控制比特。非对称功率控制详细公开于由本发明申请人提交的PCT/KR/98-00186中。

    图6表示在越区切换期间的信道状态报告方法。如图所示,当经第一前向信道FWD CH1从基站105接收到信号时,移动台109给基站105作出第一前向信道FWD CH1的信道状态报告,图6中所示为CH1 STATUS。类似地,当经第二前向信道FWD_CH2从基站107接收到信号时,移动台109给基站107作出第二前向信道FWD_CH2的信道状态报告。如上所述,移动台109分别经相应的反向信道发送表示第一和第二前向信道FWD_CH1和FWD_CH2的第一和第二信道状态信息。

    图7A至7D是表示根据本发明第一实施例的越区切换方法的流程图。下面将参照图4和7A-7D来描述第一越区切换方法。

    图7表示用于执行第一越区切换方法的基站控制器103的操作。在步骤501,基站控制器103从网络101接收数据。在接收数据后,在步骤503,基站控制器103从属于要给其发送数据的移动台109当前所处的基站组的各个基站接收信道状态信息。此后,在步骤505,基站控制器103根据所接收到的信道状态信息来确定哪些基站可为移动台109提供服务。在确定可为移动台109提供服务的各个基站之后,在步骤507,基站控制器103将分割数据,以将分割的数据发送给可提供服务的基站,如图4所示。这里,所做的假设是基站105和107被确定为能够为移动台109提供服务。在这种情况下,基站105和107中的缓冲器分别存储不同的数据DATA1和DATA2,如图8所示。在基站105和107中的一个不能向移动台109发送分割的数据的情况下,基站控制器103可发送分割的数据的该部分。

    从基站控制器提供给基站105和107的数据DATA1和DATA2根据图7B的处理过程来发送给移动台109。基站105经前向信道恒定地向移动台发送基站信号。基站信号例如可以是导频信号。

    参照图7B,下面将描述基站的操作。在步骤511,基站105接收移动台109响应于基站信号而发送的信道状态信息。当接收到信道状态信息时,在步骤513,如有必要,则基站105将信道状态信息发送给基站控制器103。基站105发送给基站控制器103的信道状态信息可以与移动台109发送给基站105的信道状态信息在形式有所不同。例如,基站105发送给基站控制器103的信道状态信息可以是根据信道条件产生的消息。

    对此,将以两个实施例描述基站的操作。

    在第一实施例中,在步骤515,基站105能够附带地根据信道状态信息(或功率控制比特)来控制业务信道功率增益。此后,在步骤517,基站105确定移动台109是否具有最佳信道条件。当确定结果是移动台109处于最佳信道条件时,在步骤519,基站105根据所报告的信道条件来分配发送功率。在分配发送功率之后,在步骤520,基站105确定比特率,并在步骤521向移动台109发送数据。但是,当移动台109不处于最佳信道条件时,基站105不发送数据。基站107也执行相同操作,以确定是否向移动台109发送数据。

    在第二实施例中,基站105执行对应于图7B的步骤511和513的图7的步骤551和553。此后,在步骤555,基站105检查移动台109的信道条件,并根据移动台109的信道条件来确定比特率。然后,在步骤557,基站105以所确定的比特率向移动台109发送数据。

    图7C表示的是在根据本发明实施例的移动台中执行的越区切换期间的数据处理方法。参照图7C,在步骤531,移动台109确定为其自身提供服务的越区切换基站。此后,在步骤533,移动台109经相应的前向信道从基站105和107接收信号,并在步骤535测量基站105和107的接收功率(Ec/Io)。在测量接收功率之后,在步骤537,移动台将前向信道的相应的信道状态信息发送给基站105和107。在步骤539,移动台109确定是否从越区切换基站105和107接收到不同的数据。当接收到如图8所示基站105和107发送的不同数据时,在步骤541,移动台109采用图5的指状部件对从基站105接收到的数据DATA1和从基站107接收到的数据DATA2进行解调。接下来,移动台109组合解调过的数据DATA1和DATA2,以恢复从基站控制器103发出的原始数据。这里,移动台能够从基站接收比特率信息,或自身检测比特率信息,以执行解调。与此同时,当从基站105和107接收到不同的数据时,在步骤545,移动台109确定是否从基站105和107中的任意一个接收到数据。当从基站105和107中的任意一个接收到数据时,移动台109在步骤547对接收到的数据进行解调,并且在步骤543将解调的数据与先前解调的数据进行组合。但是,当未从基站105和107中的任意一个接收到数据时,结束处理过程而不进行数据解调。

    图8表示的是在越区切换期间将不同数据存储在基站105和107的缓冲器中的状态。当移动台109与基站105和107之间的信道均处于良好的条件时,基站105和107发送存储在其缓冲器中的各数据,如图8所示。

    但是,当移动台109与基站105和107之一之间的信道的条件差,从而在发送数据时引起延迟时,基站控制器103可将延迟的数据转发到处于良好的信道条件的另一基站。

    参照图9,将描述用于提高越区切换期间的数据通过量的数据处理方法。基站105和107根据它们的信道条件来分配功率并确定帧的比特率(在第一实施例中),或根据它们的信道条件来分配固定功率并确定每个帧的比特率(第二实施例中),从而以所确定的比特率向移动台109发送数据。因此,仅当该移动台与基站105和107之间的信道均处于良好的条件时,即,仅当给信道指定大于0的功率值、并且它们的比特率被确定为有些值大于0时,基站105和107的缓冲器输出要被发送到移动台109的数据。亦即,当两个基站105和107均具有良好的信道条件时,可将存储在两个基站105和107中的不同数据同时发送到移动台109。但是,可能有这样一种情况,即,第一数据DATA1被正常地发送到移动台109,而第二数据DATA2则由于差的信道条件而被延迟。在这种情况下,基站控制器103经有线发送路径将第二数据DATA2转发给处于良好信道条件的基站105,如图9所示。

    下面将参照图16来描述用于将数据从处于差的信号条件的基站转发到处于良好的信道条件的基站的方法。将参照图18A至18C来描述根据图16的过程的基站控制器103、基站105和107及移动台109的操作。一般来讲,基站105或107之一能够处于差的信道条件而另一个则处于好的信道条件,然而,在下面的描述中,假设移动台109与基站105之间的信道处于好的信道条件,而移动台109与基站107之间的信道处于差的信道条件。

    首先,参照图16,当有要发送给移动台109的数据时,在步骤201,基站控制器103将数据分割成第一和第二数据DATA1和DATA2,并将第一数据DATA1发送给基站105,而将第二数据DATA2发送给基站107。当从基站控制器103接收到第一数据DATA1时,在步骤202,基站105可将所接收到的第一数据DATA1发送给移动台109,这是因为基站105与移动台109之间的信道的条件较好。当从基站105接收到第一数据DATA1时,在步骤203,移动台109向基站105发送第一数据DATA1的第一确认信息(ACK1)。当从移动台109接收到第一确认信息时,基站105将该第一确认信息提供给基站控制器103。

    但是,因为基站107与移动台109之间的信道条件差,因此,发送到基站107的第二数据DATA2经历发送延迟。在步骤205,基站107对发送延迟时间进行计数。当发送延迟时间超过预定时间时,在步骤206,基站107向基站控制器103发送第二时间DATA2的发送失败信号。

    当从基站107接收到发送失败信号时,基站控制器103将该第二数据DATA2发送到处于良好的的信道条件的基站105。然后,在步骤209,基站105将所接收到的第二数据DATA2发送到移动台109。当从基站105接收到第二数据DATA2时,在步骤211,移动台109向基站105发送第二数据DATA2的第二确认信息(ACK2)。当接收到第二确认信息时,基站105将该第二确认信息发送到基站控制器103。

    参照图18A,将对根据图16的过程进行的基站控制器103的操作进行描述。当有要发送到移动台109的数据时,在步骤301,基站控制器103将该数据分割成第一和第二数据流(即,DATA1和DATA2),并将所分割的第一和第二数据流DATA1和DATA2分别发送到基站105和107。在数据发送之后,在步骤303,基站控制器103确定是否从基站105和107接收到响应信号(即,ACK或NACK)。当接收到响应信号时,基站控制器103判定响应信号是否为确认信息(ACK)。当响应信号为确认信号(ACK)时,基站控制器103停止数据发送,反之,当响应信号为NACK(即,否定确认)时,基站控制器103将发送失败数据重新发送到处于良好的信道条件的另一基站。

    参照图18B,将描述根据图16的过程执行的基站的操作。在步骤311,基站检查是否从基站控制器103接收到数据。当从基站控制器103接收到数据时,在步骤313,基站判定是否可以将该数据发送到移动台109。该判定是基于参照图1和2描述的信道条件和QoS来作出的。当判定结果为可以向移动台109发送数据时,在步骤315,基站向移动台109发送该数据。但是,当不能向移动台109发送数据时,在步骤317,基站确定发送延迟时间是否超过正常数据发送时间。当发送延迟时间超过正常数据发送时间时,在步骤319,基站将一发送失败信号发送到基站控制器103。

    当在步骤315向移动台109发送数据之后,在步骤321,基站检查是否从移动台109接收到确认信息(ACK)。当从移动台109接收到确认信息时,在步骤323,基站将该确认信息发送给基站控制器103。当未能接收到确认信息时,在步骤325,基站判定正常确认时间是否已过去。在经历正常确认时间之后,在步骤327,基站将一发送失败信号发送给基站控制器103。

    参照图18C,将描述根据图16的过程执行的移动台109的操作。在步骤331,移动台109确定是否从基站接收到分割的数据。当从基站接收到分割的数据时,在步骤333,移动台109向基站发送确认信息。

    在另一实施例中,基站控制器103向两个以上的基站发送重叠数据,并确定各基站的发送顺序,从而按照该发送顺序让具有较好的信道条件的基站首先发送。亦即,如图10所示,在第一数据DATA1之后,向基站105提供预备的第二数据DATA2,而在第二数据DATA2之后,向基站107提供预备的第一数据DATA1。当第一数据DATA1的发送首先完成时,基站105接下来发送第二数据DATA2;当第二数据DATA2的发送首先完成时,基站107接下来发送第一数据DATA1。因此,基站105和107的缓冲器存储第一和第二数据DATA1和DATA2两者,以备另一基站不能向移动台109发送数据的情况。如果基站107不能将第二数据DATA2发送到移动台109,则基站105在第一数据DATA1的发送结束之后接着发送第二数据DATA2,而基站107丢弃其缓冲器中的第二数据DATA2。

    下面将采用与参照图16作出的假设相同的假设来参照图17详细描述该过程。

    当有要发送到移动台109的数据时,基站控制器103将该数据分割成第一和第二数据DATA1和DATA2。在分割数据之后,在步骤221,基站控制器103接连地向基站105发送第一和第二数据DATA1和DATA2。此后,在步骤223,基站控制器103接连地向基站107发送第二和第一数据DATA2和DATA1。这是为了应付基站105和107之一不能向移动台109发送数据的情况。基站105顺序地将从基站控制器103发送的第一和第二数据DATA1和DATA2存储在其缓冲器中。由于基站105与移动台109之间形成的信道处于良好条件下,因此,在步骤225,基站105向移动台109发送第一和第二数据DATA1和DATA2中首先接收到的第一数据DATA1。当从基站105接收到第一数据DATA1时,在步骤227,移动台109向基站105发送第一数据DATA1的第一确认信息。然后,在步骤229,基站105将所接收到的第一确认信息发送给基站控制器103。当接收到该第一确认信息时,在步骤231,基站控制器103向基站107发送第一数据DATA1的丢弃指令,这是因为第一数据DATA1已被成功发送到移动台109。然后,基站107丢弃存储在其缓冲器中的第一数据DATA1。另外,处于差的信道条件的基站107不能发送第二数据DATA2,从而在发送第二数据DATA2时引起延迟。当在步骤233,第二数据DATA2的发送延迟时间超过正常发送时间时,在步骤235,基站107向基站控制器103发送第二数据DATA2的发送失败信号。

    尽管第二基站107未能发送第二数据DATA2,由于基站105在其缓冲器中存储有第二数据DATA2,因此,基站105能够在步骤225发送第一数据DATA1之后,在步骤237将第二数据DATA2发送到移动台109。当从基站105接收到第二数据DATA2之后,在步骤239,移动台109向基站105发送第二数据DATA2的第二确认信息。然后,在步骤241,基站105将所接收到的第二确认信息发送到基站控制器103。当从基站105接收到第二确认信息时,在步骤243,基站控制器103将第二数据DATA2的丢弃指令发送到基站107。然后,基站107响应于该丢弃指令丢弃存储在其缓冲器中的第二数据DATA2。

    在如图11所示的根据第二实施例的越区切换方法中,当基站控制器103从网络101接收数据并将其发送到移动台109时,基站控制器103通过将相同数据重复给两个以上的基站而发送相同数据。移动台109可在每个帧上将用于基站选择的最佳链路指示符连同信道状态信息一同发送到各个基站。

    图12表示移动台经用于信道状态报告的反向信道向基站发送的帧的结构。如图所示,每个帧包括一信道状态指示符和最佳链路指示符。该最佳链路指示符表示最佳基站,来自该最佳基站的信号在移动台109上具有最高功率。由最佳链路指示符指定的基站可在一帧内向移动台109发送数据。其他未指定的基站在该帧上停止发送数据。

    图13表示的是用于当向基站105和107发送相同数据时发送存储在基站105和107的缓冲器中的数据的方法。在图13中,由来自移动台109的最佳链路指示符指定的移动台105发送第一数据DATA1,而未指定的基站107不发送数据。未指定的基站107更新有关当前数据发送点的信息,即有关接下来要发送哪个数据的信息(参见图14)。该信息可从移动台109提供给各基站,或者,可经有线路径(例如,基站105-基站控制器103-基站107)在各个基站之间交换。在向两个以上的基站发送信道状态信息时,移动台109或者可以将信道状态信息单独地发送到各基站,或者可能组合各基站的信道状态信息并经相同的信道发送组合的信道状态信息。在后一方法中,移动台109经单个信道发送用于不同基站的信道状态信息。为此,移动台109采用用于区别相应基站的一代码来对各信道状态信息进行扩频,然后采用相同的信道分离代码对其进行扩频。

    图15A至15C表示根据第二实施例的越区切换方法。下面将参照图11来描述图15A至15C的第二越区切换方法。

    图15A表示在基站控制器103中执行的第二越区切换方法。参照图15A,在步骤601,基站控制器103从网络101接收数据。在从网络101接收数据之后,在步骤603,基站控制器103从基站105和107接收信道状态信息。此后,在步骤605,基站控制器103根据从基站105和107接收到的信道状态信息来确定可向移动台109发送数据的那些基站105和107(即,可提供服务的基站)。在确定可向移动台109发送数据的那些基站105和107之后,在步骤607,基站控制器103向可提供服务的基站105和107发送数据。这里,发送到基站105和107的数据是重复的相同数据。

    图15B表示在基站105或107中执行的第二越区切换方法。下面将描述基站105或107如何处理从基站控制器103发出的数据。

    参照图15B,在步骤611,基站从移动台109接收信道状态报告。在步骤613,在必要时,基站可向基站控制器103发送信道状态信息。另外,在步骤615,基站可根据所接收到的信道状态信息(或功率控制比特)附带地控制业务信道的功率增益。接下来,在步骤617,基站确定基站和移动台109之间的信道是否处于最佳条件。当移动台109具有最佳信道条件时,基站在步骤619检查该基站本身是否由最佳链路指示符指定。如果检查结果是基站本身是由最佳链路指示符指定,则在步骤621基站向移动台109分配用于数据发送的发送功率,并在步骤623将该数据发送到移动台109。但是,当移动台109不具有最佳信道条件时,或当基站本身不是由最佳链路指示符指定时,基站不向移动台发送数据。

    图15C表示在移动台中执行的第二越区切换方法。参照图15C,在步骤631,移动台109确定给其本身提供服务的越区切换基站。在确定越区切换基站之后,在步骤633,移动台109从所确定的基站接收信号,并在步骤635测量各基站的接收强度。此后,在步骤637,移动台109根据信道测量值向各基站发送信道状态信息。另外,移动台109发送用于指定具有最佳信道条件的基站的最佳链路指示符以及信道状态信息。接下来,在步骤639,移动台109从基站接收数据,并对接收数据进行解调。

    例如,移动台109在步骤631确定可为其提供服务的基站105或107,并在步骤633经相应的前向信道从基站105和107中的任意一个或两者接收基站信号。当接收到信号时,移动台109在步骤635测量从基站105和107接收到的信号的强度,并在步骤637根据测量值向基站105和107发送信道状态信息。这里,移动台109将一最佳链路指示符连同信道状态信息一同发送到处于最佳信道条件的基站105。在进行信道状态报告之后,在步骤639,移动台109对从先前指定为基站的基站接收到的数据进行解调。

    如上所述,在越区切换期间,根据依照信道条件和QoS确定的优先级来发送数据,使得分组服务的数据通过量最大。另外,基站在服务数据中插入服务数据的速率指示符,以发送该速率指示符,从而,移动台109能够快速地适应可变比特率,以对接收数据进行解调。

    尽管已参照其具体的优选实施例图示和描述了本发明,但本领域内的普通技术人员应理解的是,可在不背离由所附权利要求限定的本发明宗旨和范围的前提下,可对本发明进行各种形式和细节上的修改。

移动通信系统中处理分组数据.pdf_第1页
第1页 / 共58页
移动通信系统中处理分组数据.pdf_第2页
第2页 / 共58页
移动通信系统中处理分组数据.pdf_第3页
第3页 / 共58页
点击查看更多>>
资源描述

《移动通信系统中处理分组数据.pdf》由会员分享,可在线阅读,更多相关《移动通信系统中处理分组数据.pdf(58页珍藏版)》请在专利查询网上搜索。

一种移动通信系统的分组数据处理装置。基站包括:信道状态信息接收器,用于从移动台接收前向信道的信道状态信息;辅助信道发送控制器,用于根据该信道状态信息来确定该移动台的比特率;辅助信道发送器,用于以由辅助信道发送控制器确定的比特率向所述移动台发送数据;和速率指示符发送器,用于产生具有有关所确定的比特率信息的速率指示符,并将所产生的速率指示符发送到移动台。移动台包括:信道状态测量器,用于检测经一导频信道。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 电通信技术


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1