高压电源设备的电绝缘和冷却材料 本发明涉及高压(HV)电源设备的绝缘和冷却材料,尤其是X射线管的电源的绝缘和冷却材料,并且涉及包括这些材料的高压电源设备。
更详细地说,本发明涉及用于高压电源设备的新颖的绝缘和冷却材料,所述材料具有提高的热传导率,以便改善工作期间在该设备中产生的热的耗散。
众所周知,X射线管包括向阳极发射电子束的直热式阴极。在该电子束的轰击作用下,阳极发射X射线。为了获得高能量电子束,利用在阴极和阳极之间产生的强电场加速所述电子。为此,阳极被提升到相对于阴极的非常高的正电位。这种电位可能超过150千伏。高压电源设备用以产生这种电位。
一般说来,高压电源设备的有源部件被封闭和支撑在由电绝缘材料制成的第一带肋壳体或外包层(surround)中,而包含所述有源部件的第一壳体本身被包含在由金属制成的并且接地的第二壳体中。包含有源部件地第一壳体的内部空间以及第一和第二壳体之间的空间用绝缘和冷却液体、通常是油填充。
更具体地说,通过把第一壳体中高压电源设备的有源部件,例如,高压变压器的各部件、倍压整流器和所有导电元件安置在由高强度绝缘材料、例如电绝缘塑材料制成的这种第一壳体的不同舱室中而使它们在机械上固定就位并且在电气上彼此绝缘。第一壳体中的自由空间也被充以诸如油的绝缘和冷却液体。
第一壳体内部以及第一壳体和接地的第二壳体之间的充油的连通的自由空间构成通常所说的高压空间。
X射线管工作所需要的功率为在零点几秒内可能高达25千瓦至100千瓦。即使高压电源设备具有非常高的效率,由该设备所提供的功率也受到由有源部件中的电损耗引起的高压空间中的温升的限制。这些损耗可能相当于所述输出功率的6%。通常的功率损耗为大约几个千瓦。
为了避免由这些功率损耗引起的所述敏感元件的热损坏,需要把所述高压空间保持在比较低的温度。
因此,本发明的一个实施例提供一种用于高压电源设备的绝缘和冷却材料,该材料具有提高的热传导率,同时保持所需要的电性能。
本发明的实施例还提供一种高压电源设备,其中,各高压有源部件周围的充油的高压空间包括由所公开的本发明的绝缘和冷却材料制成的、用来绝缘和支撑所述有源部件的外包层。
在本发明的实施例中,生产用于高压电源设备的绝缘和冷却材料,后者包括至少一种热塑聚合物和至少一种细粒的陶瓷填充物的混合物,使得所述材料具有至少0.9W/m.K.的热传导系数。
本发明还涉及高压电源设备,它包括由本发明的绝缘和冷却材料制成的、用于绝缘和支撑所述有源部件的外包层。
美国专利申请No.09/168,843(该专利申请被包括在本文中作为参考)中描述了一种本发明适用于其中的高压电源设备。简单地说,将包括各有源部件的所述高压电源设备在组合式支架的各外壳中固定就位,所述各外壳的侧壁由具有重叠的互补的斜面的、既提供电绝缘又提供热传导的元件构成。
图1显示根据本发明的实施例的高压电源设备的示意的截面图。
图1示意地示出高压电源设备1,它按照惯例包括浸没在油中并且利用由固体绝缘材料制成的一个或多个外包层11支撑和绝缘的有源部件10。
这些有源部件10以及所述支撑和绝缘外包层11本身被封闭在例如由铝制成的接地的带肋壳体12中。
分别在有源部件10和绝缘外包层11之间以及绝缘外包层11和接地的壳体12之间的自由空间13、14彼此连通并且被填充以绝缘油。
外包层11的电绝缘和冷却材料包括至少一种热塑聚合物和至少一种细粒的陶瓷填充物的混合物,使得所述材料具有至少0.9W/m.K.的热传导系数。
绝缘外包层11可以是包括由充以绝缘油的间隔隔开的彼此重叠的单体外包层的多重外包层。
虽然在不存在任何外加电场的情况下通常用于高压电源设备的绝缘油具有大约0.115W/m.K.的热传导系数,但是,已经发现,例如,由施加存在于高压电源设备或者任何其它装置的高电场引起的油的流动,这些相同的油具有大得多的热传导系数,根据所述设备的几何形状,这些系数可能高出30至100倍。由此可见,对于热耗散,外包层11的固态绝缘材料是关键因数。
任何有可能获得所需要的至少0.9W/m.K.的热传导率并且不降低绝缘和冷却材料的其它所需要的性能、例如介电强度和介电常数的热塑聚合物都可以用于本发明的混合物。具体地说,介电强度应当大于50千伏/毫米,并且介电常数在2和4之间。
此外,所述绝缘材料应当是这样的:它允许例如利用模压、注塑模压或挤压,或者任何其它传统的工业方法,按照工业生产规模进行容易的转换(conversion)。
为了便于所述转换,任何传统的处理手段都可以被包括在所述材料中。
在用于配制本发明的混合物的聚合物中,可以提到聚丙烯,含氟聚合物,例如,聚四氟乙烯(PTFE),聚三氟氯乙烯(PCTFE),和聚偏氟乙烯(PVDF),聚酰胺-酰亚胺(PAT),聚醚酰亚胺(PET),聚醚硫化物(PES),聚苯基硫化物(PPS)以及它们的混合物。
最佳聚合物是聚丙烯,聚醚酰亚胺,聚四氟乙烯以及聚苯基硫化物和聚醚酰亚胺/聚苯基硫化物混合物。
在配制本发明的混合物中有用的细粒陶瓷填充物是使该混合物具有所需要的热传导率而又不降低绝缘和冷却材料的其它性能、尤其是电绝缘性能的所有陶瓷材料。
最佳细粒陶瓷填充物是氧化铝,氮化铝,氮化硼,硫酸钡和氧化铍,以及它们的混合物。
尤其要推荐氮化硼,氮化铝以及它们的混合物。
按照重量计,所述混合物中细粒陶瓷填充物的数量通常至少是该混合物的总重量的40%,一般在40%和80%(重量)之间,最好从40%到60%(重量)。
细粒陶瓷填充物一般具有1微米和100微米之间的粒度,最好具有10微米和60微米之间的粒度。
可以任选地用另一种材料层涂敷所述陶瓷填充物的粒子,所述材料不损害热传导和电绝缘性能,例如为所述粒子提供润滑作用的硅层。
实施例
用简单的机械混合的方法制备了根据本发明的实施例的绝缘和冷却材料,按照重量计,它包括30%的聚硫化苯基,30%的聚乙醚酰亚胺,25%的氮化铝粉末和15%的氮化硼粉末。
将所述材料注塑模制,生产了直径60毫米,厚度4毫米的盘形样品,测定了以下性能:
热传导率(75℃) >0.96W/m.K.
击穿强度 >70.5千伏/毫米
介电常数 3.4(1千赫,75℃)。
本专业的技术人员可以在不脱离本发明的精神和范围的情况下,在结构和/或功能和/制造步骤方面,对所公开的实施例进行各种各样的修改。