积层陶瓷电子元件的制造方法 本发明是关于积层陶瓷电容器等积层陶瓷电子元件的制造方法,特别是关于将未烧成的陶瓷积层体进行脱粘合剂处理后,再将该未烧成的陶瓷积层体进行烧成,制造积层电子元件的方法。
积层陶瓷电容器等积层陶瓷电子元件,在陶瓷积层体内部的厚度方向上具有重叠由导体膜构成的内部电极。在制造这样的积层陶瓷电子部件时,一般按照如下进行,即,将由有机粘合剂、分散剂和溶剂形成的粘合剂溶液与原料粉末进行混合,制成浆液,在由这些获得的陶瓷未烧结片上,用丝网印刷等印刷上电极图案,形成垒积状。
将获得的陶瓷积层体切割成所需尺寸的片状,这种片状的陶瓷积层体在烧成之前,进行去除有机粘合剂的脱粘合剂处理。
对片状陶瓷积层体进行脱粘合剂处理,当去除了其中的有机物成分时,陶瓷积层体会变得很脆,对陶瓷积层体的处理也很容易产生构造缺陷。由此,例如,在后面的烧成工序中使陶瓷积层体很容易产生缺口等缺陷。
如前所述,将未烧成的陶瓷积层体装入脱粘合剂炉中进行脱粘剂处理时,由于很难将炉内的环境气氛保持恒定,所以会产生部分环境气氛地差异。由此,将片状陶瓷积层体向炉内安放时,其中的不同位置会对有机粘合剂的去除量产生变化,结果带来的问题是,在脱粘合剂后的陶瓷积层体中所含有机物的量产生很大偏差,这就导致烧成后所得到的每个积层陶瓷电子元件制品的电特性存在很大偏差。
因此,本发明的目的是提供一种可行的制造方法,即,在脱除陶瓷积层体中粘合剂时,能够均匀地将各个陶瓷积层体中的有机物去除,抑制特性偏差,而且能够提高脱粘合剂处理后的陶瓷积层的处理,提高信赖性,获得没有构造缺陷的积层陶瓷电子元件。
为了达到上述目的,本发明是在对未烧成的陶瓷积层体3进行脱粘合剂处理时,使脱除粘合剂后的陶瓷积层体3中的有机物残存为0.5~8.5重量%,最好残存1.0~5.0重量%。在该脱粘合剂工序中,将未烧成陶瓷积层体3的内部电极5、6的脱粘合剂起始温度,设定为高于陶瓷层7的脱粘合剂起始温度。
即,本发明的积层陶瓷电子元件的制造方法,特征是在具有以下工序的积层陶瓷电子部件的制造方法中,使脱粘合剂后的陶瓷积层体3中含0.5~8.5重量%,最好含1.0~5.0重量%的有机物。方法包括将在内部由陶瓷层7和以贱金属膜形成的内部电极5、6数层交替形成积层的未烧成陶瓷积层体3进行脱粘合剂处理的工序,和对脱除粘合剂的未烧成陶瓷积层体3进行烧成的工序。
这样,通过脱粘合剂处理,使陶瓷积层体3中的绝大部分有机粘合剂在不燃烧下可分解去除,从而可防止片元件发生脱层或裂化。另一方面,通过在片状陶瓷积层体3中残存一些有机粘合剂,使陶瓷积层体3不会变得极端脆弱,脱粘合部处理后的陶瓷积层体3在后面的处理中不会造成结构缺陷,能够很容易地进行搬送陶瓷积层体3,在随后的烧成工序中也不会产生缺口。
脱粘合剂后的陶瓷积层体3中的有机物含量少于0.5重量%时,脱粘合剂处理后的陶瓷积层体3很容易产生缺口,降低了其处理性能,使陶瓷积层体3在不破损下难以搬送。另一方面,脱粘合剂后的陶瓷积层体3的陶瓷层7中有机物含量多于8.5重量%时,在脱粘合剂处理后的烧成工序中,烧成炉内易产生分解的有机物,不能使烧成炉内的环境气氛保持稳定。进而希望脱粘合剂后的陶瓷积层体3中含1.0~5.0重量%的有机物,这样可确实消除烧成时烧成炉内的环境气氛变动问题和积层陶瓷电子元件的构造缺陷问题。
进而,本发明积层陶瓷电子元件的特征是,在具有如下工序的积层陶瓷电子元件制造方法中,将内部电极5、6的脱粘合剂起始温度设定为高于陶瓷层7的脱粘合剂起始温度。该方法包括对在内部由陶瓷层7和以贱金属膜构成的内部电极5、6,数层交替形成积层的未烧成陶瓷积层体3进行脱粘合剂处理的工序,和对脱粘合剂处理的未烧成陶瓷积层体3进行烧成的工序。
根据以上所述,在脱粘合剂处理工序中,使内部电极5、6的脱粘合剂处理迟于陶瓷层7的脱粘合剂处理。即,在脱粘合剂处理工序中,首先从靠近陶瓷积层体3表面部分的陶瓷层7开始脱除粘合剂,随后迟一些再开始陶瓷积层体3较内部的内部电极5、6脱除粘合剂。这样可在整个陶瓷积层体3内均匀地去除有机粘合剂。
内部电极5、6的脱粘合剂起始温度最好比陶瓷层7的脱粘合剂起始温度高5℃以上,高10℃以上更好。当内部电极5、6的脱粘合剂起始温度和陶瓷层7的脱粘合剂起始温度之差低于5℃时,对整个陶瓷积层体均匀去除有机粘合剂的效果很差。但是,根据本发明,脱除粘合剂的起始温度不是粘合剂单体的起始温度,而是内部电极膜5、6和陶瓷层7的脱粘合剂起始温度。原因是,当陶瓷材料和电极材料混合粘合剂时,受到羟基的催化作用,脱粘合剂的起始温度变得很低,所以这一温度差必须考虑。
脱粘合剂处理工序,在将未烧成的陶瓷积层体3装入脱粘合剂炉内时,使用网孔比未烧成陶瓷积层体3小的容器。这样做是使环境气体能均匀地分布在整个陶瓷积层体3周围。使每个陶瓷积层体3内的脱除粘合剂变得均匀。在脱粘合剂炉内设有棚板时,棚板最好有网孔,直接与带网孔的棚板贴敷装入陶瓷积层体3。当网孔比陶瓷积层体3大时,陶瓷积层体3易从容器中掉出,所以不好。例如,在对1005~3216(1mm×0.5mm~3.2mm×1.6mm)型的陶瓷积层体进行脱粘合剂时,容器的网孔最好20~100目。
上述脱粘合剂处理工序是在使用了惰性气体的环境气中进行。这样做可使有机粘合剂在不燃烧下进行分解,并能防止烧成后的片状元件产生脱层和裂纹。特别是在使用贱金属糊形成内部电极5、6时,在脱粘合剂处理工序中,能抑制贱金属被氧化,结果能获得信赖性很高的积层陶瓷电子元件。
在脱粘合剂的过程中,使脱粘合剂炉内的压力高于大气压。通过这样做,可防止大气从外部进入炉内,并能抑制炉内的环境气变动。
以下参照附图,对本发明的实施形态进行具体且详细地说明。
作为陶瓷电子元件,以制造积层陶瓷电容器为例进行说明。形成积层陶瓷电容器的陶瓷层的电介体原材料,主要是BaTiO3。为了能降低烧成温度,可进一步添加作为主要成分的玻璃成分,如Si2O3、B2O3、Li2O3等。为了调整耐还原性和温度特性,最好添加含Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等稀土元素的氧化物,和含Sc、Ti、V、Cr、Mn、Fe、Co、Ni等过渡金属的氧化物。
例如,可以以下办法从这些原料粉末获得电介体材料。
首先,按规定量分别称取原始原料,进行配合,例如,利用球磨机进行湿式混合。接着利用喷雾式干燥机进行干燥,随后进行煅烧,得到电介体氧化物。另外,煅烧,通常以800~1300℃,进行2~10小时。接着,用喷射式磨机或球磨机等粉碎到规定粒径,得到电介体材料。
以下制作浆液。浆液主要是由上述电介体材料、粘合剂、溶剂形成,根据需要也可添加可塑剂、分散剂等。
作为粘合剂,例如有松香(アビチェン)酸树脂、聚乙烯醇缩丁醛、乙基纤维素、丙烯酸树脂等。作为溶剂,例如有乙醇、松油醇、丁基卡必醇、甲苯、煤油等。作为可塑剂,例如有松香酸衍生物、二乙基草酸、聚乙二醇、聚烷撑二醇、酞酸酯、酞酸二丁酯等。作为分散剂,例如有甘油、十八(烷)基胺、三氯醋酸、油酸、辛二烯、油酸乙酯、甘油单油酸酯、甘油三油酸酯、甘油三硬脂酸酯、メ ンセ-テン油等。
调制该浆液时,电介体材料占整体的比率为30~80重量%,其他,粘合剂为2-5重量%、可塑剂为0.1~5重量%、分散剂为0.1~5重量%,溶剂为20-70重量%。
接着将上述电介体材料和这些进行混合。
使用筐式混合器、球磨机、粒珠混合器进行浆液混合。
接着涂布该浆液,得到陶瓷未烧结片。使用刮刀片、刮板涂敷器、模具涂敷器、逆动涂敷器等,涂布成1μm-20μm厚的陶瓷未烧结片。
再将这种陶瓷未烧结片切割成适当尺寸,得到图1所示的陶瓷未烧结片1。
如图2所示,在上述得到的一部分陶瓷未烧结片1a、1b的表面上形成内部电极图案2a、2b。
作为制造内部电极用糊时所用的导体材料,可使用Ni和Cu等贱金属材料或它们的合金,进而也可用它们的混合物。这样的导体材料可以是球状、磷片状等,其形状没有特殊限制,也可以用这些形状的混合形状。导体材料的平均粒径为0.1~10μm,最好用0.1~1μm的。有机载体是含有粘合剂和溶剂的。作为粘合剂,例如可使用已知乙基纤维素、丙烯酸树脂、丁缩醛树脂等中的任一种。粘合剂含量取为1~10重量%。作为溶剂,例如可使用已知的松油醇、丁基卡必醇、煤油等中的任何一种。溶剂含量取为20-55重量%,其他总计在10重量%以下。根据需要也可以添加山梨聚糖脂肪酸酯、甘油脂肪酸酯等分散剂、酞酸二辛酯、酞酸二丁酯、丁基酞酰乙二醇酸丁酯等可塑剂,为防止脱层和抑制烧结等目的,也可添加电介质、绝缘体等各种陶瓷粉体等。添加有机金属树脂也是很有效的。
使用这样获得的内部电极用糊,利用印刷法、转印法,薄板法等印刷二种类型的内部电极图案2a、2b,如图2所示。印刷了这些内部电极图案2a、2b的陶瓷未烧结片1a、1b,为了与没有印刷内部电极图案2a、2b的陶瓷未烧结片1区别开,图2中分别以符号「1a」、「1b」表示.
将印刷了这种内部电极图案2a、2b的陶瓷未烧结片1a、1b,进行交替重叠,如图3所示,进而在其两侧重叠上没有印刷内部电极图案2a、2b的陶瓷未烧结片1,1,所谓的预成片,将它们压合,得到图4所示的积层体。
如前所述,这样的积层体,除了将印刷了内部电极图案2a、2b的陶瓷未烧结片1a、1b和没有印刷内部电极图案2a、2b的陶瓷未烧结片1,1进行积层的方法外,也可以将陶瓷未烧结片和导电糊按规定顺序依次印刷重叠,利用所谓的浆液建造法(スラリ-ビルト)获得。
将该积层体进行纵横切割,如图5所示,分割成片状的未烧成陶瓷积层体3。这种陶瓷积层体3,例如具有图6所示的层结构。将由具有内部电极5,6的电介体构成的陶瓷层7,7……按照图6所示顺序顺次进行积层,进而在其两侧分别重叠上数层没有形成内部电极5,6的陶瓷层7,7……。这样,在具有这种结构的陶瓷积层体3的端部交替露出内部电极5,6。
接着,将该陶瓷积层体3进行脱粘合剂处理,进行烧成。
这样获得的积层型陶瓷电容器的形状和大小,可根据目的和用途适当确定。例如,长方体状时,通常为1.0~3.2mm×0.5~1.6mm×0.5~1.6mm。
对上述脱粘合剂的处理进行说明。本说明书中的所谓「脱粘合剂」,是指将陶瓷积层体3进行加热,以去除该陶瓷积层体3中所含的粘合剂和其他有机物,并使其中一部分残留在陶瓷积层体3中的过程。
作为脱粘合剂处理,首先将分割的未烧成陶瓷积层体3装入脱粘合剂炉内。这时,陶瓷积层体3在表面附着热粘砂防止剂,表面包涂氧化锆的氧化铝质外壳上会由静电形成堵塞。也可以装入炉内,通过使用比陶瓷积层体3的长度小的网孔外壳代替氧化铝质外壳,能很均匀地使陶瓷积层体3进行脱除粘合剂。
作为脱粘合剂的处理条件,通常使炉内压力处于恒压状态下进行设定炉内温度和时间。除此之外,也有时改变炉内的压力。例如,如图7所示,首先,在常温下将炉的内压上升到10个大气压,随后,以20℃/hr的速率升温。在炉内温度达到200℃时,开始减压,恢复到大气压。另一方面,炉温可以使用粘合剂的特性进行设定,在最高温度TP下保持一定时间后,结束脱粘合剂处理。
最初所用的高压和开始减压的温度,任何一个都可以根据粘合剂进行选择,并不仅限于上述的10个大气压和200℃。
在这样的脱粘合剂处理工序中,在脱粘合剂处理的陶瓷积层体3内,相对于陶瓷积层体3,有机物含量可为0.5~8.5重量%。这样做是通过脱粘合剂后调整陶瓷积层体3中的有机物含量,不会因陶瓷积层体3的处理而造成构造缺陷,可以很容易地进行搬送,并能抑制煅烧时分解有机物产生,由于能将烧成炉内的环境气保持稳定,所以能抑制烧成不稳。
所谓陶瓷积层体3中所含的有机物,并不仅限于粘合剂的残存物,也是指粘合剂和其他有机物的残存物。一般讲,在将浆液制成片时,溶剂会蒸发,但这里所说的含在陶瓷积层体3中的有机物,是指残存在陶瓷积层体3中的所有有机物,这可以通过陶瓷积层体3在脱粘合剂处理前后的重量差来进行测定。
在脱粘合剂处理时,向炉内通入惰性气体,例如氮气,可使有机粘合剂在不燃烧下进行分解,这可以防止烧成后的片状元件不产生脱层和裂纹。特别是,由于内部电极5,6是使用贱金属糊形成。所以也能抑制内部电极5,6发生氧化。
通过适当选择内部电极5,6中所含的粘合剂和陶瓷层7中所含的粘合剂,及改变内部电极糊和陶瓷浆液的配合组成,能够使内部电极5,6的脱粘合剂起始温度不同于陶瓷层7的脱粘合剂起始温度。具体讲,通过将内部电极5,6的脱粘合剂起始温度设定在高于陶瓷层7的脱粘合剂起始温度,可在陶瓷层7的脱粘合剂处理结束后,再进行内部电极5,6的脱粘合剂处理。从而能在片状元件的内外进行均匀的脱粘合剂处理。
脱粘合剂后,陶瓷积层体3的烧成,可使用环境气的风道炉和环境气的固定炉。
在将陶瓷积层3烧成后,在陶瓷积层体3的端部形成外部电极2,2,如图8所示。对于形成外部电极2,2的导体成分,一般可以使用Ni和Ni合金,Cu和Cu合金等。在用导电糊形成外部电极2,2时,可利用浸渍法等,将导电糊涂布在陶瓷积层体3的端部。随后,在中性环境气和还原性环境中600~1000℃下烧结,以形成外部电极2,2。烧成前,在未烧成陶瓷积层体3的端部上涂布导电糊,在烧成陶瓷积层体3的同时烧固导电糊,可形成外部电极2,2。也可以使用蒸镀和喷镀等干法形成外部电极2,2。
例如,如上述制作的积层陶瓷电容器,在脱粘合剂后,在处理陶瓷积层体3时,破损很少、也很容易安装。在对未烧成的陶瓷积层体3进行烧成时不受脱粘合剂处理工序中脱粘合剂的偏差影响,从而抑制了成品中的电特性偏差。
在上述说明中,作为积层陶瓷电子元件,仅以积层陶瓷电容器的制造方法为例进行了说明,仅仅变更了陶瓷材料、内部电极图案的形状和积层顺序等,本发明也同样适用于积层陶瓷感应器和积层陶瓷复合元件等其他积层陶瓷电子元件的制造。
以下对本发明的实施例,列举数值进行具体说明。
首先,对实施例1进行说明。分别称取预先合成的纯度99%以上的BaTiO3(钛酸钡)0.96摩尔份,纯度99%以上的MgO(氧化镁)0.05摩尔份、ZnO(氧化锌)0.01摩尔份、TiO2(氧化钛)0.03摩尔份、Ho2O3(氧化钬)0.005摩尔份。将这些化合物装入罐磨机中,同时加入氧化铝球和2.5l水,搅拌混合15小时,得混合物。
接着将该混合物装入不锈钢罐内,用热风干燥器,在150℃下干燥4小时,将干燥的混合物进行粗粉碎,用隧道炉,大气中1200℃下将该粗粉碎的混合物煅烧2小时,得到基本成分的第1种成分粉末。
接着,分别称取第1种成分的粉末98摩尔份和CaZrO3(基本成分的第2种成分)粉末2摩尔份,对于100重量份的这些基本成分,添加2重量份添加成分的第1种成分(0.20Li2O-0.60SiO2-0.04SrO-0.10MgO-0.06ZnO),对于基本成分和添加成分的合计重量,添加15重量%的由丁缩醛系树脂形成的有机粘合剂,再加入50重量%的乙醇,将这些用球磨机粉碎混合,制成浆液。
接着装入反转辊筒涂敷机内形成薄膜成形物,将其连续接收到长尺寸的聚酯薄膜上,在同一薄膜上将该薄膜成形物加热到100℃,使其干燥,得到约20μm厚的未烧成陶瓷片。虽然该片是长尺寸的,但使用它时,切割成10cm的正方形。
另一方面,内部电极用导电性糊,是将10g平均粒径1.0μm的镍粉末和0.9g乙基纤维素溶解在9.1g丁基卡必醇中,将其装入搅拌机内,通过搅拌10小时获得。这样,将该导电性糊通过具有图案的筛网印刷到上述未烧陶瓷片的一个面上,将其干燥。
接着,使上述印刷面在上,积层33个的未烧成陶瓷片,这时,在邻接的上下片中,使其印刷面在图案的纵向上移动一半,进行配置。同样,在该积层物的上下两面上分别积层数个没有印刷导电性糊的未烧成陶瓷片,在约50℃下沿厚度方向施加40T重荷,进行压合,然后,将该积层物切割成格子状,得到未烧成陶瓷积层体。
接着,将该积层体以20cm×20cm的尺寸贴敷在由不锈钢制的30目网孔状容器上,装入脱粘合剂炉内后,在N2环境气中使炉内压力为1.2大气压后,以50℃/h的升温速度升温到350℃,并在350℃下保持2小时后,再以50℃/h的降温速率降到室温,燃烧有机粘合剂。
随后,由H2(2体积%)+N2(98体积%)形成还原性环境气体。保持此状态,以1000℃/h的升温速率从室温上升到1200℃,并在1200℃(最高温度)下保持3小时后,以100℃/h的降温速度降温,将环境气置换成大气环境气(氧化性环境气),600℃下保持30分钟,进行氧化处理,随后冷却到室温,得到积层烧结体片。
接着,在露出电极的积层烧结体片的侧面涂布由铜、玻璃熔料(glassfrit)和载体(vehicle)形成的导电性糊,并干燥,再将它置于大气中,在650℃下烧固15分钟,形成铜电极层,在其上用电解电镀法形成镍层,再在其上,用电镀法设置Pb-Sn焊锡层,形成一对外部电极。
将完成的积层电容器随意选取50个,使用ヒュ-しットバッカ-ド公司制造的4284A,在20℃下,频率1kHz、电压(实效值)1.0V的条件下进行测定静电容量。然后利用计算求出50个的平均静电容量值(X)和标准偏差(σ)。由下式求出容量偏差,在3.0%以内为优良品。
计算式:σ(标准偏差)/X(平均)×100
片的缺口,随意选取1000个完成的积层电容器,利用光学显微镜观察片缺口的发生率。结果示于表1。表1中实施例NO.前带「*」号的表示本发明范围外的比较例。
按以下求出表1的各个参数。
脱粘合剂后的陶瓷积层体3的有机物量,测定脱粘合剂前后的陶瓷积层体3的重量变化后,计算重量减少率,假定全部减少重量为粘合剂,利用计算求出脱粘合剂后的陶瓷积层体的有机物量。
脱粘合剂的起始温度差,使用DTA(示差热分析),分别测定内部电极糊的干燥膜和陶瓷片。DTA的测定,以20℃/min的升温速度,进行到粘合剂分解结束。所说的表1中脱粘合剂的起始温度差是指(内部电极膜的脱粘合剂起始温度)-(陶瓷片的脱粘合剂起始温度)的差。
利用设在炉内的压差计测定炉内压力。
表1 实施例 NO. 脱粘后的 有机物量 (%) 脱粘起始 温度的差 (℃) 脱粘 容器 环 境 气 炉内压力 (气压) 容量 偏差 (%) 片缺口 发生率 (%) 1 3.1 20 网孔状 N2 1.2 1.23 0.0 *2 0.3 20 网孔状 N2 1.2 0.54 3.0 3 0.5 20 网孔状 N2 1.2 0.74 0.9 4 1.0 20 网孔状 N2 1.2 0.98 0.3 5 4.9 20 网孔状 N2 1.2 1.82 0.0 6 8.6 20 网孔状 N2 1.2 2.91 0.0 *7 10.1 20 网孔状 N2 1.2 5.13 0.0 *8 4.0 3 网孔状 N2 1.2 3.32 0.2 9 4.1 5 网孔状 N2 1.2 2.88 0.1 10 3.9 10 网孔状 N2 1.2 1.76 0.0 11 3.2 20 板状 N2 1.2 2.89 0.4 12 3.1 20 网孔状 Air 1.2 2.98 0.8 13 2.9 20 网孔状 N2 1.0 2.61 0.1
实施例2-7,通过改变实施例1中脱粘合剂时的保持温度,改变脱粘合剂后的有机物量。
实施例8-10,改变实施例1中脱粘合剂时的保持温度和内部电极和陶瓷片的粘合剂聚合度,改变脱粘合剂的起始温度差。
实施例11,将实施例1中未烧成的陶瓷积层体3装入脱粘合剂炉内时,使用板状的陶瓷容器代替金属制网孔小于未烧成陶瓷积层体3的容器。
实施例12,将实施例1中的脱粘合剂炉的环境气改变成空气(Air)。
实施例13,使实施例1中的脱粘合剂炉内压力与外气压相同。
如表1所示,使陶瓷积层体的脱粘合剂后的有机物量为0.5-8.5%,容量偏差能控制在3%以内,同时,积层片缺口发生率能在1.0%以内。陶瓷积层体的脱粘合剂后的有机物量为1.0~5.0%,容量偏差可控制在2.0%以内,同时积层片缺口发生率能在0.3%以内。
使内部电极的脱粘合剂起始温度比陶瓷片的脱粘合剂起始温度高5℃以上,容量偏差可控制在3%以内。
进而,脱粘合剂时使用网孔状容器,容量偏差可控制在3%以内。
在上述条件的基础上,使炉内的压力高于外部气压,使环境气为中性环境气,通过脱粘合剂处理,可获得抑制容量偏差的效果。
如上所述,根据本发明积层陶瓷电子元件的制造方法,可提高脱粘合剂后陶瓷积层体3的处理性,能以高效率高质量制造积层陶瓷电子元件。在脱粘合剂时,能均匀地从各个未烧成陶瓷积层体中去除有机物,可抑制制品的特性偏差,获得信赖度高的积层陶瓷电子元件。
图1表示根据本发明制作积层陶瓷电子元件的陶瓷未烧结片的斜视图。
图2是在上述陶瓷未烧结片中,一部分印刷内部电极图案状态的慨念性示意斜视图。
图3是对上述陶瓷未烧结片进行积层工序的概念性示意分离斜视图。
图4是利用上述积层工序获得的陶瓷未烧结片积层体的示意斜视图。
图5是切割上述陶瓷未烧结片的积层体,获得的部分切割的陶瓷积层体斜视图。
图6是上述陶瓷积层体的层结构示意分离斜视图。
图7是对上述陶瓷积层体进行脱粘合剂处理时,脱粘合剂炉内压力和温度和时间的分布图例的示意曲线图。
图8是一例完成的积层陶瓷电子元件实例,部分剖切的斜视图。
3,陶瓷积层体
5,内部电极
6,内部电极
7,陶瓷层