混合电路开关 本发明基于一种如权利要求1前序所述的混合电路开关。
EP0847586B1公开了一种可被用于高压电力网中的混合电路开关。这种混合电路开关具有两个串联的灭弧室,在第一个灭弧室中,作为灭孤绝缘介质地填充有SF6气体,而第二个灭孤室被设计成真空开关室。第二个灭弧室被SF6气体包围住。这两个灭弧室的主触点通过一个杠杆变速箱而被一个共用的驱动装置同时驱动。这两个灭弧室具有一条所述的耐损耗主触点位于其中的功率电流路径并且与之平行地具有一条额定电流路径,其中额定电流路径只有唯一一个中断位置。在断开时,总是先断开额定电流路径,随后,要断开的电流换向到功率电流路径上。随后,功率电流路径继续传输电流,直到其确定中断为止。
在这种混合电路开关中,总是在断开时出现在真空开关室内的电弧大致闪亮了一段与在充满气体的第一灭孤室内相同的时间,结果,真空开关室的主触点经历了比较高且长时间作用的电流负载以及与之有关的严重损耗,这使得维护工作需要经常进行,由此限制了混合电路开关的可用性。这种混合电路开关需要比较高的驱动能量,这是因为,根据在充满气体的第一灭弧室内应用的换向原理,驱动装置必须完全或部分地产生电孤强烈吹动所需的高气压。在动力方面如此特殊设计的驱动装置是比较昂贵的。
在电弧熄灭后,在横跨混合电路开关出现的重现电压对应于这两个灭弧室的固有电容地分配给这两个灭弧室。结果,成真空开关室形状的第二灭弧室承受了大部分地重现电压,从而第二灭弧室在重现电压升高时通弧。通弧可以反复出现在断路时。通孤可能与不希望出现的电压升高有关地在高压电力网中引起不希望出现的振荡过程。另外,通弧还要求真空开关室具有自耗触点,因而缩短了其使用寿命。
DE3131271A1公开了一种混合电路开关,其中这两个灭弧室之间的电压分配是借助一个与气体吹拂且绝缘的第一灭孤室并联的电容和一个与成真空开关室状的第二灭弧室并联的非线性电阻实现的。当重现电压在电弧中断后马上升高时,这两个元件确保了真空开关室首先承受大部分的重现电压。随后,大部分现存电压转移到第一灭弧室身上。这两个用于控制电压分配的元件在混合电路开关的开关罩中占据了比较大的体积,因而复合式开关需要比较大并因此也很昂贵的开关罩。
本发明如独立权利要求的特征部分所述完成了上述任务,它提供了一种生产成本低廉且可用性强的混合电路开关。
在这种混合电路开关中,第一次重现电压的急升基本上由成真空开关室形式的第二灭孤室承受。第一灭弧室灭弧路程的强度恢复在这里可以比较缓慢地实现,这意味着,与在常见的断路器中的情况相比,可以明显不太强烈地吹拂第一灭孤室。电弧吹拂初步准备所需的压缩气体可以消耗少许多的能量。
本发明所获得的优点在于,在相同功率断流容量的情况下,可以给混合电路开关配备明显性能差的且因而成本低廉的驱动装置。另外,在混合电路开关中,在第一灭弧室内出现的压力明显小于在常见断路器中的压力,从而可以根据压力较小的情况来设计绝缘管和其余受压部件,由此可以更经济地设计混合电路开关的结构。还有利地造成了,在第一灭弧室内冷却电弧的气体的流速因在这里只需要较小的吹拂而可以处于亚音速范围,这是由于可以始终使初步准备用于吹拂的压缩气体量比较小。另一个优点是,第二灭弧室(在这里成真空开关室形式)的自耗触点因气流吹拂在断开时时间短以及避免了在重现电压升高时一再通弧而具有比较长的使用寿命,这造成混合电路开关的可操作性得到有利的改善。
所述的混合电路开关具有至少两个串联的、由同一个驱动装置或由独立的驱动装置操作的且充入不同灭孤介质的灭弧室,其中第一灭弧室的灭弧绝缘介质绝缘地包围着第二灭弧室。设置了在开关过程中确保将电压适当地分配给第一灭弧室和第二灭弧室的装置。还设置了在断开过程中总是保证第一灭弧室的运动相对第二灭弧室的运动提前进行并且在接通过程中总是保证第二灭弧室的运动相对第一灭弧室的运动提前进行的装置。在接通过程中,第二灭弧室总是在第一灭弧室前关闭。作为第一灭弧室的灭弧绝缘介质,采用了一种气体或混合气体,而作为第二灭弧室,至少设置了一个具有一个绝缘外壳的真空开关室。但对于第二灭弧室,也可采用其它开关原理。
本发明的其它设计方案是从属权利要求的内容。
以下,结合附图来详细说明本发明、其改进方案和由此获得的优点,其中这些附图只示出一个实施例。
图1示出了一个处于接通状态的且很简单画出的混合电路开关的一个实施例,其中在活塞一缸式结构中被压缩的气体吹拂第一灭弧室内的电弧;
图2示出了一个处于断开状态的且很简单画出的混合电路开关的实施例;
图3示出了装在复式断路器中的真空开关室的实施例的示意截面图。
在所有图中,起相同作用的部件用同一标记表示而且没有描述或画出本发明直接内容不需要的部件。
图1示出了一个很简单画出的处于接通状态的混合电路开关1的第一实施例。混合电路开关1具有两个串联的灭弧室2、3,它们在这里被安装成沿一个共同的纵轴线4延伸并且与所述纵轴线同轴。但灭弧室2、3完全可以在混合电路开关的其它实施例中设置在各个不同的相对倾斜的纵轴线上。还可以设想到,在具有倾斜纵轴线的变形实施例中,纵轴线不仅是在一个平面或两个相互平行的平面内,而且这些平面本身有一个对结构有益的交角。
混合电路开关1通过一个由电绝缘材料制成的驱动杆5而被一个未示出的驱动装置驱动。常见的蓄力驱动装置可以被拟定为上述驱动装置。但也可以没有中间接入蓄力器地采用一个电控直流电机驱动装置。这个变形实施例被视为是特别经济的并且它还可以通过简单方式使混合电路开关1的接触速度适应于各个特殊的操作要求。在这两个灭弧室2、3之间设置了一个变速箱6,它使这两个灭弧室2、3的运动相互关联起来并且技术合理地使这两个运动过程协调一致。
一个支承混合电路开关1的灭弧室2、3的支座绝缘子7使驱动杆5不受环境影响。支座绝缘子7在近地侧与未示出的驱动装置密封连接并在灭弧室侧设有一个金属法兰8,所述法兰与第一金属连接法兰盘9用螺钉连接在一起。灭弧室2驱动侧通过连接法兰盘9与电力网相连。另外,灭弧室外壳11的第一端部法兰10与连接法兰盘9用螺钉连接在一起。灭弧室外壳11成圆柱形并且是密封且电绝缘的,它沿纵轴线4延伸并包围住这两个灭弧室2、3和变速箱6。灭弧室外壳11在与第一端部法兰10相对的侧面上具有第二金属端部法兰12,所述法兰12与第二金属连接法兰盘13用螺钉连接在一起。背向驱动装置的灭弧室3侧通过所述连接法兰盘13与电力网相连。在端部法兰12与连接法兰盘13之间装有一个金属支承板14。
连接法兰盘9牢固且导电地与圆柱形金属支承管15相连,支承管15被布置成与纵轴线4同轴。支承管15具有一个未示出的开口,它用于支承管15内部与其余灭弧室腔之间的气体交换。在驱动侧的支承管15内部起到了引导导向件16的作用,所述导向件与驱动杆5相连并且将驱动杆5支承在支承管15上。导向件16是如此设计的,即当混合电路开关1处于断开位置时,它限制了驱动杆5的行程。
驱动杆5在端部与一个金属接触管17相连,所述接触管是第一灭弧室2的第一活动功率触点。接触管17的管身具有未示出的开口,所述开口用于接触管17内部与支承管15内部的气体交换。接触管17在其背向驱动装置的那一侧设有弹性自耗指18,它被设置成郁金香花的形状。自耗指18环绕并接触一个金属自耗销19。自耗销19轴向延伸于灭弧室2的中央并且被设置成可以轴向移动。自耗销19总是与接触管17运动方向相反地移动。自耗销19是第一灭弧室2的第二活动功率触点。
支承管15在背向驱动装置的那一侧具有一个缩颈20并具有一个引导接触管17的导向件21。导向件21在内部设有未示出的螺旋触点,所述触点可以使电流正确地从支承管15转向接触管17。一个金属喷嘴座22在缩颈20上滑动,所述喷嘴座22在驱动装置侧配备有可以使电流正确地从支承管15转向喷嘴座22的滑动触点24。
喷嘴座22围出一个压缩腔24。压缩腔24在驱动装置侧被一个止回阀25堵住,所述止回阀被导向件21固定住。止回阀25具有一个阀芯26,它在压缩腔24内压力过高时防止压缩气体进入灭弧室2、3公用的灭弧腔27中。在圆柱形压缩腔24的相反侧上,设置了另一个被固定在喷嘴座22内的止回阀28,它的阀芯29在压缩腔24内的压力过高时允许压缩空气流出压缩腔24。
在喷嘴座22中,一个绝缘喷嘴30被固定在背向驱动装置的那一侧上。绝缘喷嘴30被布置成与自耗销19是同轴的。接触管17、喷嘴座22和绝缘喷嘴30形成了一个一体组件。喷嘴缩口就直接位于自耗指18的前面并且绝缘喷嘴30的开口方向与自耗指18相反。喷嘴座22在外侧面上具有一个被设计成接触位置的增厚部31。滑动触点32在灭弧室2接通状态下靠在增厚部31上。滑动触点32与一个圆柱形金属壳33相连,所述金属壳被一个固定安装的金属导向件34固定住。在导向件34的一个中心孔内设置了未示出的滑动触点,它们使导向件34与自耗销19导电连接。电流路径从导向件34起如作用线35所示地经过连接件44而转向第二灭弧室3的活动触点36。
在背向驱动装置的绝缘喷嘴30侧上,一个电绝缘的固定盘37被牢固地安装在所述绝缘喷嘴上。但是,如果在该区域内的无电状况允许的话,则固定盘37也可以由金属制成。在固定盘37上拧入了一个齿杆38,它平行于纵轴线4并操作变速箱6。齿杆38与两个齿轮39、40啮合,所述齿杆通过支承辊41被压向齿轮39、40。一条带齿槽通入穿过导向件34的自耗销19的杆身中,齿轮39与所述槽啮合。另一个支撑辊42将自耗销19的杆身压向齿轮39。齿轮40通过一个与其活动连接的杠杆43来操作第二灭弧室3。杠杆43与连接件44相连,所述连接件与第二灭弧室3的活动触点36导电连接。
在这里,作为真空开关室示出了第二灭弧室3。灭弧室3的开关点例如也可以按照其它开关原理来实现。灭弧室3被充满公用灭弧腔的绝缘介质包围着。灭弧室3具有一个固定触点45,它与支承板14导电连接。支承板14用于固定灭弧室3。灭弧室3具有一个绝缘外壳46,所述外壳将灭弧室3内部与灭弧腔27密封地隔绝开。在这里,局部剖开地画出了绝缘外壳45。
在绝缘外壳46壁上涂覆有电阻涂层47。设置用于在中断对重现电压在这两个灭弧室2、3之间的分配的必要控制的电阻涂层47可以被镀覆在绝缘外壳46的外表面或内表面上。通过这种有益的且很节省空间的电阻涂层47设置方式,可以有利地使第二灭弧室3的尺寸很小。在这里,电阻涂层47的欧姆电阻值为10kΩ-500kΩ,事实证明,100 kΩ的电阻值是特别有利的。
图3很简单地示出了第二灭弧室3的一个实施例,所述灭弧室在这里成真空开关室形式。真空开关室具有一个圆柱形的导电屏蔽49,它使开关残余物远离绝缘外壳46或电阻涂层47。屏蔽49借助一个电桥50与电阻涂层47的电势中心点相连,所述中心点在断开时确定地位于该电势上。桥50与电阻涂层47的接触是借助一个涂覆在电阻涂层47上的导电漆而实现的。但也可以设想出没有这种电桥50的变形实施例。电阻涂层47可以成条形地被涂覆在绝缘外壳46的内表面或外表面上,但它的整个表面也可以被涂覆上电阻涂层47。
电阻涂层47在这里具有由环氧树脂构成的基体,其中均匀分布地夹杂有碳黑和玻璃小球。碳黑起到了导电体的作用,借助所混入的碳黑量来调整电阻涂层47的电阻值。玻璃小球起到了添加剂的作用,它们的任务是使电阻涂层47的热膨胀系数等于绝缘外壳46的热膨胀系数,以避免电阻涂层47在出现热膨胀时剥离开绝缘外壳46。可以事先制成电阻涂层47并随后将其粘到绝缘外壳46中或者粘到其外表面上,但是它也可以象膏剂那样被涂到绝缘外壳46的各表面上并随后使其硬化,其中它很牢固地附着在绝缘外壳46的材料上。在此所用的绝缘外壳46由陶瓷材料制成,但它也可以想象到其它绝缘材料。然后,在硬化过程中加热绝缘外壳46。
电阻涂层47基体所用的浇注树脂来源于酐硬化环氧树脂、不饱和聚酯树脂、丙烯酸树脂和聚亚氨酯树脂。但是,导电性能可以象电阻涂层47那样可调节的导电硅酮树脂也是可行的。起添加剂作用的玻璃小球的直径为1微米至50微米,在10微米至30微米的情况下,会出现良好的均匀分布。有利地采用这样的玻璃小球,即它们已经涂覆有增粘附剂,这是因为随后在浇注树脂基体与玻璃小球之间的粘接非常密切,因而产生了很均匀的电阻涂层47。在加入玻璃小球或不加入玻璃小球的情况下,可以使用其它矿物和另外的无机添加剂。
在公用灭弧腔27中填充有发挥电绝缘作用的阴电气体或混合气体,它们不仅起到了用于第一灭弧室2的灭弧介质的作用,还起到了绝缘介质的作用。在这里,充气压力为3巴-22巴并最好为9巴。作为灭弧绝缘介质地采用SF6气体或者氮气与SF6气体的混合气。但是,在这里采用压缩空气或氮气与其它阴电气体的混合气也是可行的。事实证明,SF6气体的含量占5%-50%的混合气是特别有利的。
在接通状态下,混合电路开关1按照以下被称为额定电流路径的电流路径引导电流:连接法兰盘9、支承管15、喷嘴座22、外壳33、导向件34、作用线35、连接件44、活动触点36、固定触点45、支承板14和连接法兰盘13。但是,尤其是当复合断路器1必须被设置用于比较高的额定电流时,也可以与第二灭弧室3平行地设置一个适用于高额定电流的合适的额定电流路径。
当混合电路开关1收到断开命令时,未示出的驱动装置使接触管17和绝缘喷嘴30一起向左移动。与此同时,齿杆38通过齿轮39反方向向右地驱动自耗销19移动,而外壳33和导向件34保持不动。一旦喷嘴座22的增厚部31离开了外壳33的滑动触点32,则断开上述额定电流路径并使要切断的电流整流到靠内的功率电流路径上。功率电流路径使电流流过以下开关部件:连接法兰盘9、支承管15、导向件21、接触管17、自耗销19、导向件34、作用线35、连接件44、活动触点36、固定触点45、支承板14和连接法兰盘13。
在断开额定电流路径后,接触管17和绝缘喷嘴30一起继续向左移动,自耗销19以相同的速度继续反向移动。在运动过程中,触点随后在功率电流路径中分开。触点分开的结果就是,在自耗指18与自耗销19的尖端之间,在为此而设的电弧室48内形成了一道电弧。
通常,第二灭弧室3直到这一时刻才关闭。它只在经过一段延迟时间Tv后开启,所述延迟时间由以下公式确定:
Tv=(tLibo min-t1)毫秒其中tLibo min是可能在气体吹拂的第一灭弧室内出现的最短电弧时间(单位为毫秒),它由混合电路开关1各自使用地点的电力网数据和混合电路开关1的性能例如由其固有时间来确定。时间t1位于2毫秒至4毫秒。延迟时间Tv是被迫由变速箱6产生的。如图2所示地,第二灭弧室3具有一个明显比灭弧室2小的行程h2。
在第一灭弧室2的断开运动过程中在压缩腔24内的气体或混合气被压缩,止回阀25防止了在背向绝缘喷嘴30的压缩腔侧的压缩气体流入公用灭弧腔27中,如果在电弧室48内的压力状况允许的话,比较少的压缩气体早已通过止回阀28流入了电弧室48。如此相对地确定绝缘喷嘴30的缩口直径、在断开运动开始时尚封闭大部分喷嘴口和自耗指18的流出横截面的自耗销19的直径以及接触管17的内径,即在吹拂电弧时,总是从电弧室48中充足地输送出由非离子化和离子化气体构成的混合气或气体,从而在那里可以只形成一个与传统断路器相比明显低的气压。气压大小是如此确定的,即流出电弧室48的流速通常小于声音极限值。由于在电弧室48内的压力比较低,所以同样可以始终比较低地在压缩腔24内形成压力,从而压缩只需要比较少的驱动能量。与传统的断路器相比,在这里的混合电路开关1中,由断开时比较低的气压决定地,可以有利地采用性能差因而更便宜的驱动装置。
紧接在触点在功率电流路径中分开后,自耗销19作为流出横截面地露出了大部分的绝缘喷嘴30的缩口横截面。在切断电流比较小时,在触点分开时已经开始吹拂在电弧室48内点燃的电弧。灭弧绝缘介质在吹拂时总是以低于音速的流速流动。在截断大电流时,如在电网短路切断时可能出现的那种情况,电弧如此强烈地加热电弧室48以及在电弧室内的气体,结果在该电弧室内的压力略微高于压缩腔24内的压力。在这种情况下,止回阀28防止了被加热且承受压力的气体流入压缩腔24并可能积存在那里。或者,被加热的压力气体一方面经过接触管17的内部而另一方面经过绝缘喷嘴30地流入公用灭弧腔27中。在这种情况下,当电弧强度及电弧室48内的压力一直降低到止回阀28可以开启即压缩腔24内的压力高于电弧室48内的压力时,吹拂电弧才开始进行。在这种情况下,灭弧绝缘介质也在吹拂电弧时以低于音速的流速流动。
在这个混合电路开关1的实施例中,第一灭弧室2的电弧室48是如此设计的,即存在一个很小的死点容积,从而不会实现由电弧本身产生的压力气体值得注意地积累起来。因此,自身产生的压力气体也不可能值得重视地支持吹拂电弧,这是因为只有这样,才能在吹拂电弧时确保流速在亚音速范围内。
当灭弧室2、3已经熄灭了电弧时,在灭弧室2的自耗指18与自耗销19之间,或在灭弧室3的活动触点36与固定触点45之间,分别出现了部分重现电压。真空开关室的触点间距总是比气体开关的触点间距更快速地恢复,从而真空开关室在重现电压开始急剧升高时承受大部分的电压。重现电压分配给这两个串联灭弧室通常是通过这两个灭弧室的固有电容而确定的。但在这里,准确限定地确保了与第二灭弧室3平行设置的电阻涂层47的欧姆值较高的电阻,从而重现电压分配给这两个灭弧室2、3是如此实现的,即首先大部分重现电压位于第二灭弧室3上。随着断开过程的继续进行,第一灭弧室2承担了大部分的重现电压,这部分电压随后完全施加在混合电路开关1上。在混合电路开关1断开的状态下,第一灭弧室2承受着现存电压的绝大部分。在设计欧姆电压控制方法时,要注意可能会在第二灭弧室3内在重现电压升高时没有出现再次通弧。
在图2中,示出了处于断开状态的混合电路开关1。在接通混合电路开关1时,总是先关闭第二灭弧室3,确切地说是在没有通入电流的情况下关闭第二灭弧室。通过变速箱6确保了时间提前。在第二灭弧室3关闭后,马上使第一灭弧室功率电流路径的那两个活动触点相互靠近。当达到了相应的预点弧距离时,形成了接通电弧并且闭合电流环路。灭弧室2功率电流路径的这两个活动触点又继续靠拢,直到它们接触上为止,随后马上闭合额定电流路径并由灭弧室2承担继续输送电流的任务。灭弧室2功率电流路径的这两个活动触点仍然继续移动,直到它们最终已经到达确定的接通位置为止。
在这个混合电路开关1中,事实已经证明是特别有利的是,无电流地接通第二灭弧室3并因而在接通时没有遭遇到触点磨损以及触点因高温触点表面熔合而粘住这样的问题。在以正常工作状况为前提的条件下,触点36、45在混合电路开关1的使用寿命期限内不需要更新,这有利地简化了混合电路开关1的操作维修工作并有利地提高了其可操作性。
除了上述具有一个为产生吹拂电弧所需的压力气体的压缩腔24的实施例外,作为第一灭弧室2地还可以采用其它实施方式,例如:一个具有一个用于积蓄因电弧支持而产生的气体成分的独立积蓄腔的灭弧室,其中所述积蓄腔与压缩腔配合工作,或者一个具有仅部分可压缩的且用于积蓄因电弧支持而产生的气体成分的积蓄腔的灭弧室,或者一个具有只部分可压缩的吹拂腔的灭弧室,其中完全没有电弧支持地产生了压力气体。
在混合电路开关1的任何一个实施例中,如上所述地,第二灭弧室3在断开时同样相对第一灭弧室2时间滞后地开启并在接通时提前关闭。另外,在任何一个上述实施例中,在断开时可以借助一个差动活塞增强驱动力。通过这种措施,可以简单地进一步降低机械驱动能量需求并进一步降低驱动装置的价格。
在混合电路开关1的上述实施例中,已经被证明是特别有利的是,取决于在给灭弧室2充气时的SF6气体含量,与传统的断路器相比,在灭弧室2内只需要减少了5倍-15倍的灭弧压力。因此,可以根据力负荷和压力负荷较低的情况来设计驱动装置以及其余构件,这有利地降低了混合电路开关1的价格。