一种用于锂二次电池的复合聚合物隔膜及其制备技术 技术领域:本发明属于制备锂二次电池关键材料和技术领域。
背景技术:Telcodia Technologies(Bellcore公司前身)在1994年报导了用PVdF-HFP共聚物用于制备和组装塑料化锂离子电池。该方法是PVdF,添加剂SiO2和DBP在140℃条件下搅拌30分钟混匀,得到的混合物再在150℃下热压形成薄膜,最后在乙醚中浸泡2分钟除去DBP。Bellcore隔膜表观成不透明白色,有较高的孔隙率,室温下吸PC量可达自重的118%。由于该制膜过程有溶剂萃取步骤,在某种程度上增加工艺复杂性,对大规模化生产也有一定的制约性。
用相转化法制备聚合物隔膜可以克服溶剂萃取步骤带来的不便因素,它是一种以某种控制方式使聚合物从液态转变为固态的过程,这种固化过程通常是由于一个均相液态转变两个液态(液液分层)而引发的。在分层达到一定程度时,其中一个液相(聚合物浓度高的相)固化,结果形成了固体本体。通过相转化法中的控制蒸发沉淀法、浸没沉淀法或两者混合等方法可以制备出用于锂二次电池的多孔聚合物隔膜。
但用于上述方法制出的隔膜机械性能较差,孔隙率相对较低,用于组装电池后效果并不十分理想。
本发明的目的在于提供具有一定机械强度、组装电池后有较好充放电性能的复合聚合物隔膜。在体系中加入无机材料,能提高电导率,增大隔膜热和机械稳定范围,有更好的电化学稳定窗口,改善锂电极与电解液界面的相容性。用本发明的复合聚合物隔膜制备的锂二次池可具有更好的电化学性能。发明内容:
本发明的目的是这样实现的:制备本发明地复合聚合物隔膜的各组分材料包括:
(一)热塑性聚合物:不溶于水和有机溶剂(包括碳酸乙烯酯,碳酸丙烯酯,碳酸二乙酯,碳酸二甲酯,γ-丁内酯,二甲基四氢呋喃)的并具有良好化学和电化学稳定性的聚合物膜材料,如聚偏氟乙烯(PVdF)及其共聚物,聚丙烯腈(PAN)及其共聚物,聚乙烯醇(PVA)及其共聚物,聚乙烯(PE),聚丙烯(PP),聚丙烯酸酯及其衍生物,聚砜(PSf),聚醚砜(PES),聚对苯二甲酸丁二酯(PBT)及其共聚物,聚对苯二甲酸乙二醇酯(PET)及其共聚物,聚碳酸酯(PC)及其共聚物,聚酰胺(PA)及其共聚物,聚酰亚胺(PI)及其共聚物,聚氨酯(PU)及其共聚物。
(二)溶剂:能溶解聚合物,如丙酮,N,N-二甲基甲酰胺,N,N-二乙基乙酰胺,磷酸三乙酯,四氢呋喃,N-甲基吡咯烷酮,二甲基亚砜,苯,甲苯,二甲苯,氯代苯,异丁醇,β-乙氧基乙醇,1,4-二氧杂环己烷,二异丙基酮,乙酸,异丁酸,甲酸甲酯,乙酸乙酯,乙酸,环乙酯,丙酸异丁酯,乳酸丁酯,二氯甲烷,三氯甲烷,四氯化碳,环己烷,戊烷,环丁砜,环己酮,甲乙酮,N-甲基己内酰胺,己烷磷酰胺,四甲基脲,三乙基磷酸酯,三甲基磷酸酯,羟基乙腈,氯乙腈,己二腈,甲乙砜。
(三)非溶剂:不能溶解聚合物,但能和溶剂互溶,如甲醇,乙醇,丙醇,正丁醇,异丁醇,乙二醇,丙三醇,环丁醇,环己醇,水,乙醚,异丙醚,间甲酚,四氢萘,十氢萘。
(四)凝固浴:多在浸没沉淀法中使用。可以是水,甲醇,乙醇,正丙醇,异丙醇,正丁醇,异丁醇,溶剂和水的混合浴。
(五)无机添加粉料:具有高比表面积的无机物。如AlN,Al2O3,BaTiO3,LiNbO3,LiAlO2,Bi2O3,B4C,BN,CaSiO3,CeO2,Fe2O3,MoS2,PbTiO3,SiC,Si3N4,SiO2,TiB2,TiO2,WC,ZrO2,MgO,AlBr3,沸石分子筛,以及上述材料的改性产物,玻璃纤维。
(六)致孔剂:可以是低分子量的聚乙二醇(PEG),丁酮,1,4-丁二醇,磷酸,磷酸三乙酯,乙二醇独甲醚,聚乙基吡咯烷酮,二乙胺,NaNO3,,LiCl,NH4Cl。
本发明的复合聚合物隔膜是按以下步骤制备的:
(1)采用控制蒸发-浸没沉淀混合法。将聚合物和无机添加粉料、溶剂和非溶剂混合,加热搅拌成一均匀的凝胶液,无机添加粉料占聚合物重量的2-40%,聚合物占10-15%,溶剂占75-85%,非溶剂占5-10%。此方法通常使用沸点较低、易挥发的溶剂。
在静止2-20min脱去气泡后,室温条件下将铸膜凝胶液通过辊压或刮涂涂布在洁净的玻璃板、聚酯或金属基质上。也可以用流延法和浇铸法。
将铸膜液在湿度30-80%,温度20-45℃的条件下固化0-20min。然后把初生膜连同基质浸入含少量溶剂(溶剂占非溶剂重量的0-50%)的凝固浴中。凝固浴温度低于其沸点,浸入时间10min-12hr。取出湿膜在空气中干燥除去大部分水后,再放入真空烘箱30-100℃下干燥0.5-24hr后即得到孔径尺寸5-20μm,孔隙率40-80%,厚度为20-300μm的隔膜。
(2)采用浸没沉淀法。将聚合物,无机添加粉料,致孔剂和溶剂加热搅拌至呈均一透明凝胶液。聚合物占10-25%,无机添加粉料占聚合物重量的2-40%,致孔剂占聚合物重量的0-30%。此方法通常使用沸点较高的溶剂或高沸点和低沸点的混合溶剂。
凝胶液涂布过程同控制蒸发-浸没沉淀混合法,得到初生膜。将其同基质放在空气中干燥。湿度30-80%,温度20-45℃,干燥时间0-20min。然后把初生膜连同基质浸入含少量溶剂(溶剂占非溶剂重量的0-50%)的凝固浴中。凝固浴温度低于其沸点,浸入时间10min-12hr。再将隔膜放入30-100℃的真空干燥箱中干燥0.5-24hr。或者是55-65℃的热水浴中,除去残留溶剂,稳定结构。此方法制得的膜孔径尺寸20nm-20μm,孔隙率为3-70%,也可用于液液分离的超滤、微滤膜。
(3)采用蒸气相沉淀法。将聚合物,无机添加粉料,溶剂加热搅拌至呈均一透明凝胶液。聚合物占10-30%,无机添加粉料占聚合物重量的2-40%。膜的涂敷在溶剂蒸气预饱和的密闭装置中进行。装置内温度保持在20℃,并通入混有非溶剂蒸气的氮气流。调节非溶剂蒸气和氮气相对比例,使前者范围控制在65-100%。将铸膜凝胶液通过辊压或刮涂涂布在洁净的玻璃板、聚酯或金属基质上。将涂好的膜连同基质在该装置中放置3-8hr,然后再浸入20℃的非溶剂浴中30min-4hr稳定结构。此方法制得孔径尺寸5-20μm,孔隙率20-70%,对称无皮层的膜。
本发明的优点在于:制备的隔膜具有一定的机械强度,组装电池后有较好充放电性能。在体系中加入无机粉料,能够根据其种类、粒径大小来控制隔膜孔径尺寸和形貌,并且可提高电导率,增大隔膜热和机械稳定范围,具有更好的电化学稳定窗口,改善锂电极与电解质界面的相容性。附图说明
下面结合图表及实施例对本发明做进一步叙述:
图1是本发明实施例1隔膜的扫描电镜照片,
图2是本发明实施例7隔膜的扫描电镜照片,
图3是本发明实施例12隔膜的扫描电镜照片,
图4是本发明实施例13隔膜的扫描电镜照片,
图5是实施例6原理电池的充放电曲线,
图6是实施例7原理电池的充放电曲线。
具体实施方法:
表1为充放电数据表。
[实施例1]
把丙酮溶剂加入聚偏氟乙烯(型号为Kynar 2801)中,加热搅拌至澄清,然后加去离子水。它们的重量比为16/2/1。继续加热搅拌30min后得均一透明凝胶液。将凝胶液静置5min除去空气泡。在涂布之前,用丙酮和乙醇将刮刀和玻璃板基质擦干净。把涂好的膜在温度20℃、湿度50%的空气中放置至溶剂部分挥发、凝胶初步固化后,连同基质一同浸入到20℃的水浴中30min,取出后在空气中干燥除去大部分水,再将其放入40℃的真空干燥箱中烘4hr,80℃下烘12hr除去非溶剂和溶剂。隔膜的扫描电镜照片见图1。
隔膜烘干后用正丁醇测孔隙率为70%,孔径大小为8μm。将其剪成1.77cm2圆片,以天然石墨作工作电极,金属锂作对电极,电解液采用1M LiPF6-EC/DEC(vol 1∶1),在氩气手套箱里组装成原理电池,测其电化学性能。
采用电池性能测试仪对实验电池进行充放电循环的测试。充电截止电压至2.0V,放电截止电压至0.005V。充放电数据见表1。
[实施例2]
将平均粒径为10nm左右的SiO2加入到聚偏氟乙烯(型号为Kynar 2801)粉末中,纳米SiO2的含量占聚合物本体的10%。再加入丙酮,加热搅拌至澄清,然后加去离子水。聚合物,丙酮和去离子水的重量比为2/16/1。继续搅拌45min后得均一透明凝胶液。将凝胶液静置5min除去空气泡。在涂布之前,用丙酮和乙醇将刮刀和玻璃板基质擦干净。把涂好的膜在温度20℃、湿度50%的空气中放置至溶剂部分挥发、凝胶初步固化后,连同基质一同浸入到20℃的水浴中30min,取出后在空气中干燥除去大部分水,再将其放入40℃的真空干燥箱中烘4hr,80℃下烘12hr除去非溶剂和溶剂。
原理电池的组装和测试同实施例1。充放电数据见表1。
[实施例3]
将经过特殊表面处理(处理剂包括硅烷类和钛酸酯类)、平均粒径为10nm左右的SiO2加入到聚偏氟乙烯(型号为Kynar 2801)粉末中,纳米SiO2的含量占聚合物本体的10%。再加入丙酮,加热搅拌至澄清,然后加去离子水。聚合物,丙酮和去离子水的重量比为2/16/1。继续搅拌45min后得均一透明凝胶液。将凝胶液静置5min除去空气泡。在涂布之前,用丙酮和乙醇将刮刀和玻璃板基质擦干净。把涂好的膜在温度20℃、湿度50%的空气中放置至溶剂部分挥发、凝胶初步固化后,连同基质一同浸入到20℃的水浴中30min,取出后在空气中干燥除去大部分水,再将其放入40℃的真空干燥箱中烘4hr,80℃下烘12hr除去非溶剂和溶剂。
原理电池的组装和测试同实施例1。充放电数据见表1。
[实施例4]
将平均粒度为150nm左右的α-Al2O3加入到聚偏氟乙烯(型号为Kynar 2801)粉末中,纳米α-Al2O3的含量占聚合物本体的10%。再加入丙酮,加热搅拌至澄清,然后加去离子水。聚合物,丙酮和去离子水的重量比为2/16/1。继续搅拌45min后得均一透明凝胶液。将凝胶液静置5min除去空气泡。在涂布之前,用丙酮和乙醇将刮刀和玻璃板基质擦干净。把涂好的膜在温度20℃、湿度50%的空气中放置至溶剂部分挥发、凝胶初步固化后,连同基质一同浸入到20℃的水浴中30min,取出后在空气中干燥除去大部分水,再将其放入40℃的真空干燥箱中烘4hr,80℃下烘12hr除去非溶剂和溶剂。
原理电池的组装和测试同实施例1。充放电数据见表1。
[实施例5]
将经过特殊表面处理(处理剂包括硅烷类和钛酸酯类)、平均粒度为150nm左右的α-Al2O3加入到聚偏氟乙烯(型号为Kynar 2801)粉末中,经修饰过的纳米α-Al2O3含量占聚合物本体的10%。再加入丙酮,加热搅拌至澄清,然后加去离子水。聚合物,丙酮和去离子水的重量比为2/16/1。继续搅拌45min后得均一透明凝胶液。将凝胶液静置5min除去空气泡。在涂布之前,用丙酮和乙醇将刮刀和玻璃板基质擦干净。把涂好的膜在温度20℃、湿度50%的空气中放置至溶剂部分挥发、凝胶初步固化后,连同基质一同浸入到20℃的水浴中30min,取出后在空气中干燥除去大部分水,再将其放入40℃的真空干燥箱中烘4hr,80℃下烘12hr除去非溶剂和溶剂。
原理电池的组装和测试同实施例1。充放电数据见表1。
[实施例6]
将平均粒度为60nm左右的γ-Al2O3加入到聚偏氟乙烯(型号为Kynar 2801)粉末中,纳米γ-Al2O3的含量占聚合物本体的10%。再加入丙酮,加热搅拌至澄清,然后加去离子水。聚合物,丙酮和去离子水的重量比为2/16/1。继续搅拌45min后得均一透明凝胶液。将凝胶液静置5min除去空气泡。在涂布之前,用丙酮和乙醇将刮刀和玻璃板基质擦干净。把涂好的膜在温度20℃、湿度50%的空气中放置至溶剂部分挥发、凝胶初步固化后,连同基质一同浸入到20℃的水浴中30min,取出后在空气中干燥除去大部分水,再将其放入40℃的真空干燥箱中烘4hr,80℃下烘12hr除去非溶剂和溶剂。
原理电池的组装和测试同实施例1。充放电数据见表1,充放电曲线见图5。
[实施例7]
将平均粒度为40nm×10nm左右的金红石相TiO2加入到聚偏氟乙烯(型号为Kynar 2801)粉末中,纳米TiO2含量占聚合物本体的10%。再加入丙酮,加热搅拌至澄清,然后加去离子水。聚合物,丙酮和去离子水的重量比为2/16/1。继续搅拌45min后得均一透明凝胶液。将凝胶液静置5min除去空气泡。在涂布之前,用丙酮和乙醇将刮刀和玻璃板基质擦干净。把涂好的膜在温度20℃、湿度50%的空气中放置至溶剂部分挥发、凝胶初步固化后,连同基质一同浸入到20℃的水浴中30min,取出后在空气中干燥除去大部分水,再将其放入40℃的真空干燥箱中烘4hr,80℃下烘12hr除去非溶剂和溶剂。隔膜的扫描电镜照片见图2。
原理电池的组装和测试同实施例1。充放电数据见表1,充放电曲线见图6。
[实施例8]
将经过特殊表面处理(处理剂包括硅烷类和钛酸酯类)、平均粒度为40nm×10nm左右的金红石相TiO2加入到聚偏氟乙烯(型号为Kynar 2801)粉末中,经修饰过的纳米TiO2的含量占聚合物本体的10%。再加入丙酮,加热搅拌至澄清,然后加去离子水。聚合物,丙酮和去离子水的重量比为2/16/1。继续搅拌45min后得均一透明凝胶液。将凝胶液静置5min除去空气泡。在涂布之前,用丙酮和乙醇将刮刀和玻璃板基质擦干净。把涂好的膜在温度20℃、湿度50%的空气中放置至溶剂部分挥发、凝胶初步固化后,连同基质一同浸入到20℃的水浴中30min,取出后在空气中干燥除去大部分水,再将其放入40℃的真空干燥箱中烘4hr,80℃下烘12hr除去非溶剂和溶剂。
原理电池的组装和测试同实施例1。充放电数据见表1。
[实施例9]
将平均粒度为1μm左右的13X型分子筛加入到聚偏氟乙烯(型号为Kynar 2801)粉末中,13X分子筛含量占聚合物本体的10%。再加入丙酮,加热搅拌至澄清,然后加去离子水。聚合物,丙酮和去离子水的重量比为2/16/1。继续搅拌45min后得均一透明凝胶液。将凝胶液静置5min除去空气泡。在涂布之前,用丙酮和乙醇将刮刀和玻璃板基质擦干净。把涂好的膜在温度20℃、湿度50%的空气中放置至溶剂部分挥发、凝胶初步固化后,连同基质一同浸入到20℃的水浴中30min,取出后在空气中干燥除去大部分水,再将其放入40℃的真空干燥箱中烘4hr,80℃下烘12hr除去非溶剂和溶剂。
原理电池的组装和测试同实施例1。充放电数据见表1。
[实施例10]
将平均粒度为1μm左右的13X型分子筛用LiCl溶液进行离子交换,置换成Li型分子筛后,加入到聚偏氟乙烯(型号为Kynar 2801)粉末中,Li型分子筛含量占聚合物本体的10%。再加入丙酮,加热搅拌至澄清,然后加去离子水。聚合物,丙酮和去离子水的重量比为2/16/1。继续搅拌45min后得均一透明凝胶液。将凝胶液静置5min除去空气泡。在涂布之前,用丙酮和乙醇将刮刀和玻璃板基质擦干净。把涂好的膜在温度20℃、湿度50%的空气中放置至溶剂部分挥发、凝胶初步固化后,连同基质一同浸入到20℃的水浴中30min,取出后在空气中干燥除去大部分水,再将其放入40℃的真空干燥箱中烘4hr,80℃下烘12hr除去非溶剂和溶剂。
原理电池的组装和测试同实施例1。充放电数据见表1。
[实施例11]
将平均粒度为1μm左右的4A型分子筛加入到聚偏氟乙烯(型号为Kynar 2801)粉末中,4A分子筛含量占聚合物本体的10%。再加入丙酮,加热搅拌至澄清,然后加去离子水。聚合物,丙酮和去离子水的重量比为2/16/1。继续搅拌45min后得均一透明凝胶液。将凝胶液静置5min除去空气泡。在涂布之前,用丙酮和乙醇将刮刀和玻璃板基质擦干净。把涂好的膜在温度20℃、湿度50%的空气中放置至溶剂部分挥发、凝胶初步固化后,连同基质一同浸入到20℃的水浴中30min,取出后在空气中干燥除去大部分水,再将其放入40℃的真空干燥箱中烘4hr,80℃下烘12hr除去非溶剂和溶剂。
原理电池的组装和测试同实施例1。充放电数据见表1。
[实施例12]
将聚偏氟乙烯(型号为Kynar 2801)粉末,N-甲基吡咯烷酮以1/4的比例混合,加热搅拌至呈一透明均匀凝胶,然后静置直至除去凝胶中的空气泡。在湿度为30%,温度20℃的条件下,在干净的玻璃板上进行涂布。放置5min后,把初生膜连同基质一同浸入到25℃的水浴中4hr,取出后放入40℃的真空干燥箱中烘4hr,再在100℃下烘12hr,除去水分和溶剂以得到稳定的膜结构。隔膜的扫描电镜照片见图3。
原理电池的组装和测试同实施例1。充放电数据见表1。
[实施例13]
将平均粒径为10nm左右的SiO2加入到聚偏氟乙烯(型号为Kynar 2801)粉末中,纳米SiO2的含量占聚合物本体的10%。再加入N-甲基吡咯烷酮作为溶剂,它和聚偏氟乙烯重量比为4/1。加热搅拌至呈一透明均匀凝胶,然后静置直至除去凝胶中的空气泡。在湿度为30%,温度20℃的条件下,在干净的玻璃板上进行涂布。放置5min后,把初生膜连同基质一同浸入到25℃的水浴中4hr,取出后放入40℃的真空干燥箱中烘4hr,再在100℃下烘12hr,除去水分和溶剂以得到稳定的膜结构。隔膜的扫描电镜照片见图4。
原理电池的组装和测试同实施例1。充放电数据见表1。
[实施例14]
将经过特殊表面处理(处理剂包括硅烷类和钛酸酯类)、平均粒径为10nm左右的SiO2加入到聚偏氟乙烯(型号为Kynar 2801)粉末中,纳米SiO2的含量占聚合物本体的10%。再加入N-甲基吡咯烷酮作为溶剂,它和聚偏氟乙烯重量比为4/1。加热搅拌至呈一透明均匀凝胶,然后静置直至除去凝胶中的空气泡。在湿度为30%,温度20℃的条件下,在干净的玻璃板上进行涂布。放置5min后,把初生膜连同基质一同浸入到25℃的水浴中4hr,取出后放入40℃的真空干燥箱中烘4hr,再在100℃下烘12hr,除去水分和溶剂以得到稳定的膜结构。
原理电池的组装和测试同实施例1。充放电数据见表1。
[实施例15]
将平均粒度为150nm左右的α-Al2O3加入到聚偏氟乙烯(型号为Kynar 2801)粉末中,纳米α-Al2O3的含量占聚合物本体的10%。再加入N-甲基吡咯烷酮作为溶剂,它和聚偏氟乙烯重量比为4/1。加热搅拌至呈一透明均匀凝胶,然后静置直至除去凝胶中的空气泡。在湿度为30%,温度20℃的条件下,在干净的玻璃板上进行涂布。放置5min后,把初生膜连同基质一同浸入到25℃的水浴中4hr,取出后放入40℃的真空干燥箱中烘4hr,再在100℃下烘12hr,除去水分和溶剂以得到稳定的膜结构。
原理电池的组装和测试同实施例1。充放电数据见表1。
[实施例16]
将经过特殊表面处理(处理剂包括硅烷类和钛酸酯类)、平均粒度为150nm左右的α-Al2O3加入到聚偏氟乙烯(型号为Kynar 2801)粉末中,经修饰过的纳米α-Al2O3含量占聚合物本体的10%。再加入N-甲基吡咯烷酮作为溶剂,它和聚偏氟乙烯重量比为4/1。加热搅拌至呈一透明均匀凝胶,然后静置直至除去凝胶中的空气泡。在湿度为30%,温度20℃的条件下,在干净的玻璃板上进行涂布。放置5min后,把初生膜连同基质一同浸入到25℃的水浴中4hr,取出后放入40℃的真空干燥箱中烘4hr,再在100℃下烘12hr,除去水分和溶剂以得到稳定的膜结构。
原理电池的组装和测试同实施例1。充放电数据见表1。
[实施例17]
将平均粒度为60nm左右的γ-Al2O3加入到聚偏氟乙烯(型号为Kynar 2801)粉末中,纳米γ-Al2O3的含量占聚合物本体的10%。再加入N-甲基吡咯烷酮作为溶剂,它和聚偏氟乙烯重量比为4/1。加热搅拌至呈一透明均匀凝胶,然后静置直至除去凝胶中的空气泡。在湿度为30%,温度20℃的条件下,在干净的玻璃板上进行涂布。放置5min后,把初生膜连同基质一同浸入到25℃的水浴中4hr,取出后放入40℃的真空干燥箱中烘4hr,再在100℃下烘12hr,除去水分和溶剂以得到稳定的膜结构。
原理电池的组装和测试同实施例1。充放电数据见表1。
[实施例18]
将平均粒度为40nm×10nm左右的金红石相TiO2加入到聚偏氟乙烯(型号为Kynar 2801)粉末中,纳米TiO2含量占聚合物本体的10%。再加入N-甲基吡咯烷酮作为溶剂,它和聚偏氟乙烯重量比为4/1。加热搅拌至呈一透明均匀凝胶,然后静置直至除去凝胶中的空气泡。在湿度为30%,温度20℃的条件下,在干净的玻璃板上进行涂布。放置5min后,把初生膜连同基质一同浸入到25℃的水浴中4hr,取出后放入40℃的真空干燥箱中烘4hr,再在100℃下烘12hr,除去水分和溶剂以得到稳定的膜结构。
原理电池的组装和测试同实施例1。充放电数据见表1。
[实施例19]
将经过特殊表面处理(处理剂包括硅烷类和钛酸酯类)、平均粒度为40nm×10nm左右的金红石TiO2加入到聚偏氟乙烯(型号为Kynar2801)粉末中,经修饰过的纳米TiO2的含量占聚合物本体的10%。再加入N-甲基吡咯烷酮作为溶剂,它和聚偏氟乙烯重量比为4/1。加热搅拌至呈一透明均匀凝胶,然后静置直至除去凝胶中的空气泡。在湿度为30%,温度20℃的条件下,在干净的玻璃板上进行涂布。放置5min后,把初生膜连同基质一同浸入到25℃的水浴中4hr,取出后放入40℃的真空干燥箱中烘4hr,再在100℃下烘12hr,除去水分和溶剂以得到稳定的膜结构。
原理电池的组装和测试同实施例1。充放电数据见表1。
[实施例20]
将平均粒度为1μm左右的13X型分子筛加入到聚偏氟乙烯(型号为Kynar 2801)粉末中,13X分子筛含量占聚合物本体的10%。再加入N-甲基吡咯烷酮作为溶剂,它和聚偏氟乙烯重量比为4/1。加热搅拌至呈一透明均匀凝胶,然后静置直至除去凝胶中的空气泡。在湿度为30%,温度20℃的条件下,在干净的玻璃板上进行涂布。放置5min后,把初生膜连同基质一同浸入到25℃的水浴中4hr,取出后放入40℃的真空干燥箱中烘4hr,再在100℃下烘12hr,除去水分和溶剂以得到稳定的膜结构。
原理电池的组装和测试同实施例1。充放电数据见表1。
[实施例21]
将平均粒度为1μm左右的13X型分子筛用LiCl溶液进行离子交换,置换成Li型分子筛后,加入到聚偏氟乙烯(型号为Kynar 2801)粉末中,Li型分子筛含量占聚合物本体的10%。再加入N-甲基吡咯烷酮作为溶剂,它和聚偏氟乙烯重量比为4/1。加热搅拌至呈一透明均匀凝胶,然后静置直至除去凝胶中的空气泡。在湿度为30%,温度20℃的条件下,在干净的玻璃板上进行涂布。放置5min后,把初生膜连同基质一同浸入到25℃的水浴中4hr,取出后放入40℃的真空干燥箱中烘4hr,再在100℃下烘12hr,除去水分和溶剂以得到稳定的膜结构。
原理电池的组装和测试同实施例1。充放电数据见表1。
[实施例22]
将平均粒度为1μm左右的4A型分子筛加入到聚偏氟乙烯(型号为Kynar 2801)粉末中,4A分子筛含量占聚合物本体的10%。再加入N-甲基吡咯烷酮作为溶剂,它和聚偏氟乙烯重量比为4/1。加热搅拌至呈一透明均匀凝胶,然后静置直至除去凝胶中的空气泡。在湿度为30%,温度20℃的条件下,在干净的玻璃板上进行涂布。放置5min后,把初生膜连同基质一同浸入到25℃的水浴中4hr,取出后放入40℃的真空干燥箱中烘4hr,再在100℃下烘12hr,除去水分和溶剂以得到稳定的膜结构。
原理电池的组装和测试同实施例1。充放电数据见表1。
表1
实施例编号 可逆容量 第一周效率 第二周效率
1 302 86.3 98.2
2 310 88.5 98.3
3 312 88.9 98.8
4 306 87.2 98.2
5 308 88.4 96.6
6 304 87.3 97.1
7 315 89.2 98.0
8 300 86.2 96.6
9 283 82.9 98.1
10 292 84.6 98.7
11 285 85.0 94.5
12 302 86.6 98.3
13 306 87.6 98.4
14 305 87.5 98.2
15 310 88.7 98.8
16 311 88.8 98.1
17 288 83.5 95.4
18 301 86.3 97.6
19 292 84.5 96.8
20 311 88.9 98.2
21 310 88.7 98.5
22 308 88.0 96.6