接合电路小片的糊剂和半导体装置 【技术领域】
本发明涉及一种树脂糊,该树脂糊用于将半导体芯片例如IC、LSI等接合至金属框架或类似物。背景技术
近些年由于电子工业的惊人发展,已经按次序开发研究出晶体管、IC、LSI和ULSI;这些芯片中电路集成化的程度已经明显提高;芯片的大规模生产也已经成为可能;结果,使用芯片的半导体产品已经逐渐得到广泛应用。在此环境下,如何在半导体产品的大规模生产中提高加工性能并降低成本成为了一个很重要的焦点问题。传统上,通常采用Au-Si低共熔合金化将芯片粘接至导体(例如金属框架),然后采用真空密封将所得材料密封而制造出半导体产品。人们开发了树脂密封以代替真空密封,原因在于大规模生产的加工性能和成本,且如今树脂密封已得到广泛应用。与此相关的是,在封装中已经逐渐采用通过焊接或树脂糊(也就是接合电路小片的糊剂)来进行接合,作为对Au-Si低共熔合金化方式的改进。
然而,据说焊接接合具有可靠性低、易于污染芯片电极等问题,并且其应用仅限于功率晶体管和功率IC的芯片,需要较高的导热性。与此相反,通过接合电路小片的糊剂进行的粘合在加工性、可靠性等方面优于焊接接合,因而对电路小片接合用糊剂的需求迅速增长。
近年来,与IC或类似物的集成化程度往更高密度方向发展相关,芯片也日渐变得更大。另一方面,为了降低成本,已经开始使用铜线框架来代替高成本的42合金框架,42合金框架是一种传统地铅引线框。不过,当大小为约4至5mm×4至5mm或更大的IC等芯片通过Au-Si低共熔合金化热粘结至铜线框架时,由于芯片和铜线框架之间热膨胀系数的差别,导致芯片破裂或翘曲并且引起IC性能变劣,这是存在的一个问题。
这是因为用作芯片材料的硅或类似物具有3×10-6/℃的热膨胀系数,42合金框架的热膨胀系数为8×10-6/℃,但是铜线框架的热膨胀系数却大至20×10-6/℃。为了缓解这一问题,人们开始考虑使用电路小片接合用糊剂进行粘结,来代替Au-Si低共熔合金化的粘结。不过,当传统的环氧(热固性树脂)基糊剂用作接合电路小片的糊剂时,它是三维固化的,因此其固化产物具有很高的弹性模量;结果,芯片与铜线框架之间产生的应变不能被吸收。
如果使用能够得到低交联密度固化产物的环氧树脂,例如含有大量环氧单体的环氧树脂,那么可以获得低弹性模量的固化产物,但是它的粘接强度较低。而且,普通环氧树脂的粘度高,当其与无机填料混合时,会产生太高的粘度,从而导致分散时产生拉丝,随之使加工性能降低。向其中加入大量溶剂以改进加工性能,这又会导致产生孔隙。为了解决这一不便之处,已经作出了关于树脂糊的发明(JP-A-2000-80149,JP-A-2000-80150和JP-A-2000-80151),其包括三官能缩水甘油胺型环氧树脂和反应性稀释剂。然而,当糊剂中的缩水甘油胺型环氧树脂具有很高氯含量时,用这些糊封装得到的半导体耐湿性较差。发明内容
本发明的目的是提供一种接合电路小片的糊剂,其具有足够的热粘合强度并且能得到低弹性模量的固化产物,因而即使其用于粘结大芯片(例如IC)至铜线框架或类似物时,也不会引起芯片破裂或翘曲,也不会导致IC或类似物性能变劣,并且其可快速固化而不会产生孔隙。
本发明在于提供一种接合电路小片的糊剂,该糊剂包括以下物质作为必要组分:
(A)一种包含(a1)和(a2)的液体环氧树脂,(a1)是以下通式(1)所示的环氧树脂,其氯含量为500ppm或更小,并且25℃下粘度小于或等于5000mPa·s:
式中R是具有1至3个碳原子的烷基或-H,(a2)是一种含环氧基的反应性稀释剂,其氯含量为300ppm或更小,并且粘度小于或等于1000mPa·s,(a1)∶(a2)的重量比为40∶60至90∶10;
(B)一种分子中含有至少两个羟基的酚化合物;
(C)一种潜在的固化剂;
(D)一种咪唑化合物;和
(E)一种无机填料,
其中,相对于每100重量份的组分(A),组分(B)、(C)和(D)的量分别为1至10重量份、0.5至5重量份和0.5至10重量份,相对于每100重量份组分(A)、(B)、(C)和(D)的总和,组分(E)的量为25至900重量份。
本发明还在于一种采用上述接合电路小片的糊剂而制造的半导体装置。发明详述
本发明所用液体环氧树脂(A)包括通式(1)所示的环氧树脂(a1)和含环氧基的反应性稀释剂(a2),(a1)∶(a2)的重量比为40∶60至90∶10。通式(1)所示的环氧树脂(a1)具有小于或等于500ppm的氯含量。大于500ppm的氯含量是不可取的,原因在于采用这样一种环氧树脂制备的树脂糊在其用于半导体封装时显示出较低的耐湿性。通式(1)所示的环氧树脂(a1)可以具有不同的分子量;然而,分子量小并且在室温下呈液态的环氧树脂是优选的。从配合本发明电路小片接合用糊剂的可操作性和复合的糊剂的可加工性角度考虑,在25℃下环氧树脂(a1)需要具有小于或等于5000mPa·s的粘度。
与通式(1)所示环氧树脂(a1)相混合的含环氧基的反应性稀释剂(a2)需要具有小于或等于300ppm的氯含量和25℃时小于或等于1000mPa·s的粘度。大于300ppm的氯含量是不可取的,原因在于采用这样的反应性稀释剂制备的树脂糊在其用于半导体封装时显示出较低的耐湿性。从复合的糊剂的可加工性角度考虑,大于1000mPa·s的粘度是不可取的。反应性稀释剂(a2)的实例有正丁基缩水甘油醚、支链烷烃羧酸的缩水甘油酯、氧化苯乙烯、乙基己基缩水甘油醚、苯基缩水甘油醚、甲酚基缩水甘油醚和丁基苯基缩水甘油醚。这些化合物可以单独使用或者两种或多种结合使用。
通式(1)所示环氧树脂(a1)与含环氧基的反应性稀释剂(a2)的重量比为60∶40至90∶10。当反应性稀释剂(a2)的比例大于40wt%时,所得树脂糊表现出较低的粘接强度;当该比例小于10wt%时,所得树脂糊的粘度高并且可加工性差;因此这样的比例是不可取的。
本发明中,其他环氧树脂可以与液体环氧树脂(A)一起使用,优选其他环氧树脂的用量不超过全部环氧树脂的30wt%。可以与液体环氧树脂(A)混合的其他环氧树脂包括,例如,脂族环氧树脂诸如聚缩水甘油醚(通过(a)双酚A、双酚F、苯酚酚醛清漆树脂、甲酚酚醛清漆树脂等与(b)表氯醇的反应而得到)、丁二醇二缩水甘油醚、新戊二醇二缩水甘油醚等;杂环环氧树脂诸如二缩水甘油基乙内酰脲等;以及脂环族环氧树脂诸如乙烯基环己烯二氧化物、二环戊二烯二氧化物、脂环族二环氧己二酸酯等。这些化合物当中,可以使用一种或者两种或多种结合使用。
本发明所用酚化合物(B)起到环氧树脂固化剂的作用。本发明所用酚化合物(B)在分子中含有两个或多个能够与环氧基反应的活性羟基以便于产生交联。这样的酚化合物的实例是双酚A;双酚F;双酚S;四甲基双酚A;四甲基双酚F;四甲基双酚S;二羟基二苯基醚;二羟基二苯甲酮;邻羟基苯酚;间羟基苯酚;对羟基苯酚;双苯酚;四甲基双苯酚;亚乙基双酚;甲基亚乙基二(甲酚);环亚己基双酚;由单羟基酚(例如苯酚、甲酚或二甲苯酚)与甲醛在稀释的水溶液中在强酸性环境下的反应而得到的苯酚酚醛清漆树脂;单羟基酚与多官能醛(例如丙烯醛或乙二醛)在酸性环境下的反应而得到的预缩合物;以及多羟基酚(例如间苯二酚、儿茶酚或对苯二酚)与甲醛在酸性环境下的反应而得到的预缩合物。这些化合物可以单独使用或混合使用。
相对于每100重量份液体环氧树脂(A),酚化合物(B)的用量为1至10重量份。若酚化合物(B)的用量小于1重量份,则既得不到足够的粘合性也得不到较低的应力;若该用量大于10重量份,则既得不到足够的耐热性也得不到足够的粘合性;因此,这样的用量是不可取的。
本发明所用潜在的固化剂(C)用作环氧树脂的固化剂。它在高温下起到这样的作用,但是在室温下却不会如此。潜在的固化剂(C)的实例是羧酸二酰肼诸如己二酸二酰肼、十二烷酸二酰肼、间苯二甲酸二酰肼、对羟苯甲酸二酰肼等等;以及双氰胺。若使用潜在的固化剂(C),与仅用酚化合物(B)进行固化的情形相比较,则可以获得明显更高的热粘合强度。而且,因为潜在的固化剂(C)具有比酚化合物(B)更小的当量,所以试剂(C)与化合物(B)的结合使用可以得到不是粘度不太高的树脂糊。而且,由于试剂(C)具有潜在的固化能力,因而能够得到具有优异储存稳定性的树脂糊。相对于100重量份的液体环氧树脂(A),潜在的固化剂(C)的用量为0.5至5重量份。若潜在的固化剂(C)的用量小于0.5重量份,则热粘合强度低;若该用量大于5重量份,则不能获得足够低的应力;因此,这样的用量是不可取的。
本发明所用咪唑化合物(D)是一种使本发明的树脂糊具有快速固化性能所必需的组分。咪唑化合物(D)的实例是常规咪唑诸如2-甲基咪唑、2-乙基咪唑、2-苯基咪唑、2-苯基-4-甲基咪唑、2-苯基-4-甲基-5-羟甲基咪唑、2-苯基-4,5-二羟基甲基咪唑、2-C11H23-咪唑等等;以及为了更高的储存稳定性通过向其中加入三嗪或异氰脲酸而获得的化合物,例如2,4-二氨基-6-{2-甲基咪唑-(1)}-乙基-s-三嗪或其异氰脲酸加合物。这些化合物可以单独使用或者两种或多种混合使用。相对于100重量份的液体环氧树脂(A),咪唑化合物(D)的用量为0.5至10重量份。若咪唑化合物的用量小于0.5重量份,则所得树脂糊的快速固化能力不够;若该用量多于10重量份,则所得树脂糊不再表现出改进的快速固化性能,并且可能显示出降低的储存稳定性;因此,这样的用量是不可取的。
本发明所用无机填料(E)包括银粉、二氧化硅填料等等。使用银粉是为了更高的导电性能,并且银粉优选包含10ppm或更少的离子性杂质(例如卤素离子和碱金属离子)。银粉的粒子形状可以是片状的、树脂质的、球形的或类似形状。所用银粉的粒子直径根据制备的树脂糊所需要的粘度而各有不同;不过,粒子的平均直径通常优选为2至10微米,粒子的最大直径优选大约为50微米。可以使用较粗糙的银粉和精细银粉的混合物。还可以使用适当的不同粒子形状银粉的混合物。
本发明所用二氧化硅填料具有1至20微米的平均粒子直径和小于或等于50微米的最大粒子直径。若平均粒子直径小于1微米,则生成的树脂糊的粘度较高;若平均粒子直径大于20微米,则生成的树脂糊在其涂布或固化期间会引起树脂流动,从而导致滴淌;因此,这样的平均粒子直径是不可取的。若最大粒子直径大于50微米,那么当采用分配器涂敷生成的树脂糊时,喷针的出口被堵塞,使得不可能长时间连续使用喷针。可以使用较粗糙二氧化硅填料和精细二氧化硅填料的混合物。还可以使用适当的不同粒子形状二氧化硅填料的混合物。为了赋予所希望的性能,可以使用除了银粉和二氧化硅填料之外的无机填料。
相对于100重量份的组分(A)、(B)、(C)和(D)的总和,所用无机填料(E)的用量为25至900重量份。若该用量小于25重量份,则所得树脂糊的固化产物不具有充分增强的机械性能并且在剪切作用下具有低的粘接强度。若该用量大于900重量份,则所得树脂糊的粘度高并且可加工性差。
如果需要,在只要不损害想要应用的树脂糊的所需性能的情况下,本发明树脂糊可以包含添加剂,诸如硅烷偶联剂、钛酸酯偶联剂、颜料、染料、消泡剂、表面活性剂,以及溶剂等等。
本发明树脂糊可以通过以下方式制备,例如,将各个组分预混合,采用三辊开炼机或类似物捏合预混合物以形成糊剂,然后在真空下使糊剂脱气。通过使用本发明接合电路小片的糊剂并且采用传统的常规方法可以制备本发明的半导体装置。实施发明的最佳方式
下面,经由实施例来详细描述本发明。在实施例中,组分的含量比例以重量份表示。实施例1至9和对比实施例1至10
采用三辊开炼机配合并捏合表1和2中所示的组分,以获得各种不同的树脂糊。每一树脂糊在2mmHg的真空室里脱气30分钟,然后根据下述方法测量性能。
所用组分
·通式(1)的环氧树脂(环氧树脂a1-1):
粘度=2000mPa·s,
总氯含量=400ppm,
环氧当量=220
·通式(1)的环氧树脂(环氧树脂a1-2):
粘度=4000mPa·s,
总氯含量=350ppm,
环氧当量=235
·通式(1)的环氧树脂(由Sumitomo Chemical Co.,Ltd.制造的ELM-100,R=CH3):
粘度=4000mPa·s,
总氯含量=3000ppm,
环氧当量=250
·通式(1)的环氧树脂(由Shell Japan Ltd.制造的E-630,R=-H):
粘度=8000mPa·s,
总氯含量=800ppm,
环氧当量=280
·双酚A型环氧树脂(BPA):
粘度=9000mPa·s,
环氧当量=185
·双酚F型环氧树脂(BPF):
粘度=5000mPa·s,
环氧当量=170
·反应性稀释剂(a2):叔丁基苯基缩水甘油醚
粘度=400mPa·s,
总氯含量=110ppm
·酚化合物(B):双酚F
·潜在的固化剂(C):双氰胺(DDA)
·咪唑化合物(D):2-苯基-4-甲基-5-羟甲基咪唑(2P4MHZ)
·无机填料(E):
银粉:粒子直径为0.1至50微米且平均粒子直径为3微米的薄片状银粉
二氧化硅填料:平均粒子直径为5微米且最大粒子直径为20微米的二氧化硅填料
用于评价性能的方法
·粘度
采用E型粘度计(3°锥体)在25℃下,以2.5rpm测量每一树脂糊的粘度。
·弹性模量
在Teflon片材上涂布10mm宽、大约150mm长且厚度为100微米的树脂糊。将涂覆的片材在170℃的烘箱中放置30分钟,以使树脂糊固化。之后,将生成的膜从Teflon片材上剥离下来,以100mm的测试长度并在1毫米/分钟的拉伸速率下进行拉伸试验,从而得到应力-应变曲线。由曲线的初始斜率可计算出弹性模量。
·粘接强度
用树脂糊将2×2mm硅芯片安装到铜线框架。所得材料在170℃的烘箱中放置30分钟,以便于使糊固化。之后,采用粘合强度试验仪在25℃和250℃下测量电路小片的剪切强度。
·翘曲量
用树脂糊将6×15×0.3mm硅芯片安装到200微米厚的铜线框架上。将所得材料在170℃下放置30分钟,以便于使树脂糊固化。之后,采用表面粗糙度测试仪(测试长度:13mm)测量芯片的翘曲量。
·耐湿性
在硅芯片上布置铝配线而形成模拟芯片,用树脂糊将该模拟芯片安装到16-针DIP(双列直插式封装)的铜线框架。将所得材料在170℃的烘箱中放置30分钟,以便于使树脂糊固化。然后,进行金引线接合。其后,使用环氧模塑化合物,由Sumitomo Bakelite Company Limited生产的EME-6300H,在170℃的条件下进行传递模塑2分钟,随后在175℃的条件下进行后固化4小时。在125℃、2.5atm的条件下,所得封装在高压锅内处理500小时,以检测其电路的缺陷(%)。
·适用期(pot life)
将树脂糊放置在25℃的恒温器内,测算出当树脂糊的粘度变为初始粘度的至少1.2倍时的天数。
·总氯含量
精确称量约1g环氧树脂,放入200毫升平底烧瓶中。然后,按顺序加入沸石和25毫升正丁基卡必醇。加热所得混合物以溶解环氧树脂。自然冷却之后,加入25毫升1N的氢氧化钾水溶液。所得混合物加热回流10分钟。使混合物冷却大约1小时。将烧瓶内容物转移到烧杯中,用大约50毫升冰醋酸洗涤烧瓶内壁,洗涤液也转移到烧杯内。然后,用0.01N的硝酸银水溶液进行电位滴定。以同样的方式进行空白试验。环氧树脂中的总氯含量由以下等式确定。
总氯含量(wt%)=[{0.01×f×(V-V’)×AW}/(W×1000)]×100
f:0.01N的硝酸银水溶液的浓度
V:环氧树脂滴定中所用的0.01N硝酸银水溶液的体积(毫升)
V’:空白试验滴定中所用的0.01N硝酸银水溶液的体积(毫升)
W:环氧树脂的重量
AW:35.46
性能评价的结果示于表1和表2中。
表1 实施例 1 2 3 4 5 6 7 8 9 配合(重量份) 环氧树脂a1-1 18.2 9.8 1 0.3 0.7 70 18.2 4.8 5 1 0.4 0.8 70 25 4 1 0.3 0.7 70 21 4 4 1 0.4 0.7 70 30 16 2 0.5 1.5 50 30 8 8 2 0.5 1.5 50 41 5 2 0.5 1.5 50 35 5 6 2 0.5 1.5 50 18.2 8.8 2 0.3 0.7 70 环氧树脂a1-2 BPF 叔丁基苯基缩水甘油醚 双酚F DDA 2P4MHz 银粉 二氧化硅填料 性能 粘度(Pa.s) 15 >4000 1500 70 5096 0 6 ○ 20 >4000 1380 75 4508 0 6 ○ 21 >4000 2070 80 5390 0 5 ○ 23 >4000 1700 70 5292 0 7 ○ 18 >4000 1400 80 4700 0 7 ○ 24 >4000 1360 65 4310 0 6 ○ 26 >4000 1650 80 5100 0 5 ○ 25 >4000 1690 76 4950 0 6 ○ 17 >4000 1400 68 5000 0 5 ○ 粘结强度(gf/芯片) 25℃ 250℃ 翘曲量(μm) 弹性模量(Mpa) 耐湿性测试的缺陷(%) 适用期(天) 总评○:优秀
表2 对比实施例123456789 10 配合(重量份) 环氧树脂a1-1 7 26 18.2 18.2 16.7 21 BPA21 BPF 21 2 ELM-100 18.2 E-630 30叔丁基苯基缩水甘油醚7 7 21 2 10.8 7 16 10.8 7 7双酚F1 1 1 1 3.8 2 1 1 1 DDA0.3 0.4 0.3 0.4 0.3 0.3 0.5 0.3 0.3 0.7 2P4MHz0.7 0.8 0.7 0.7 0.7 0.7 1.5 0.7 5 DBU 0.3银粉70 70 70 70 70 70 70 70 70二氧化硅填料 50性能粘度(Pa.s)30 25 12 59 16 34 75 24 16 28粘结强度(gf/芯片)25℃250℃>4000 >4000 2050 1030 3800 >4000 2600 >4000 3500 23001100 1250 470 600 860 1200 800 1750 900 950翘曲量(μm)* * 60 * 80 * 75 75 80 80弹性模量(Mpa)7056 6960 3920 8036 4900 7350 5096 5488 5488 5700耐湿性测试的缺陷(%)10 0 30 40 10 0 10 100 60 20适用期(天)7 7 7 5 6 6 4 6 1 5总评× × × × × × × × × ×DBU:1,8-二氮双环(5,4,0)十一碳烯-7 *:由于芯片产生裂痕而不能测量 ×:较差
表1和2清楚地表明,实施例1至9得到的树脂糊具有热粘合强度高、应力小(也就是弹性模量低和翘曲量小)、适用期长且耐湿性优异的特点。然而,在对比实施例1的树脂糊中,由于使用了双酚A型环氧树脂,因而低应力性能较差,翘曲量大,并且发生了芯片的破裂。在对比实施例2的树脂糊中,由于使用了双酚F型环氧树脂,因而低应力性能较差,翘曲量大并且发生了芯片的破裂。在对比实施例3的树脂糊中,由于所用反应性稀释剂的量大,使得粘接强度的下降很惊人。在对比实施例4的树脂糊中,由于所用反应性稀释剂的量小,使得粘度太高,这导致加工性能下降。在对比实施例5的树脂糊中,因为未使用酚化合物,所以粘接强度明显很低。在对比实施例6的树脂糊中,因为所用酚化合物的量大,所以热粘合性低。在对比实施例7和8各自的树脂糊中,由于使用了总氯含量高的环氧树脂,使得耐湿性明显很低。在对比实施例9的树脂糊中,因为所用咪唑的量大,所以适用期极短。在对比实施例10的树脂糊中,用叔胺代替了咪唑,耐湿性也很低。因此,本发明用于半导体的树脂糊具有高的热粘合强度并且应力松弛方面的性能优异,由此使得其适用于粘结大芯片(例如IC)至铜线框架,并且能够防止由于IC装配中出现的芯片破裂或芯片应变而引起的IC或类似物性能变劣。工业实用性
本发明的树脂糊用于粘结在电子工业中都是半导体装置构成成分的芯片和金属框架或类似物。