等离子体显示装置.pdf

上传人:111****112 文档编号:1120403 上传时间:2018-04-01 格式:PDF 页数:33 大小:1.32MB
返回 下载 相关 举报
摘要
申请专利号:

CN02127104.6

申请日:

1997.07.23

公开号:

CN1492465A

公开日:

2004.04.28

当前法律状态:

终止

有效性:

无权

法律详情:

未缴年费专利权终止IPC(主分类):H01J 17/49申请日:19970723授权公告日:20070207终止日期:20140723|||授权|||实质审查的生效|||公开

IPC分类号:

H01J17/49; H01J17/28

主分类号:

H01J17/49; H01J17/28

申请人:

松下电器产业株式会社;

发明人:

谷丰; 平野重男

地址:

日本大阪府

优先权:

1996.07.23 JP 193204/1996; 1996.12.16 JP 335334/1996; 1996.12.24 JP 343173/1996; 1997.03.14 JP 61076/1997

专利代理机构:

中国专利代理(香港)有限公司

代理人:

叶恺东

PDF下载: PDF下载
内容摘要

一种等离子体显示装置,其特征在于包括:内部单元,具有框架底盘和安装于框架底盘的前面上的等离子体显示板;导热薄片,插在框架底盘和等离子体显示板之间;电路板,用以驱动等离子体显示板的光发射,并设置在框架底盘的背面上;和壳体,由前壳体和后壳体构成,用以容纳内部单元;其中,上述后壳体形成有多个通风孔。

权利要求书

1: 一种等离子体显示装置,其特征在于包括: 内部单元,具有框架底盘和安装于框架底盘的前面上的等离子 体显示板; 导热薄片,插在框架底盘和等离子体显示板之间; 电路板,用以驱动等离子体显示板的光发射,并设置在框架底 盘的背面上;和 壳体,由前壳体和后壳体构成,用以容纳内部单元; 其中,上述后壳体形成有多个通风孔。
2: 一种等离子体显示装置,其特征在于包括: 内部单元,具有框架底盘和安装于框架底盘的前面上的等离子 体显示板; 双面粘合带,用以将等离子体显示板附着在框架底盘的前面上; 和 导热薄片,插在框架底盘和等离子体显示板之间; 其中,上述框架底盘和等离子体显示板以双面粘合带粘牢,而 导热薄片与框架底盘和等离子体显示板作紧密接触。
3: 根据权利要求1或2中所述的等离子体显示装置,其特征在 于: 导热性薄片是由挠性物质形成,且当导热性薄片被使之与等离 子体显示板作压合接触时,被挤压而向旁边延伸; 其中,上述等离子体显示板和导热性薄片被使相互作紧密接触。
4: 根据权利要求3所述的等离子体显示装置,其特征在于:在 与等离子体显示板接触的导热薄片的一个面上,设置有由凸出部和 凹槽形成的不平坦部分; 其中,当上述等离子体显示板被使之与导热性薄片表面作压合 接触时,凸出部被压扁而向旁边延伸; 在凸出部的延伸过程中,凹槽用作空气通道,以在导热薄片的 表面上向外排出空气。
5: 根据权利要求1或2中所述的等离子体显示装置,其特征在 于: 上述导热性薄片是包括有被使之与等离子体显示板作紧固的紧 密接触的第一导热性薄片,和使之与框架底盘作紧固的紧密接触的 第二导热性薄片的两层构造; 其中,上述第一导热性薄片具有高导热系数,而第二导热性薄 片是弹性的,可用作缓冲介质。
6: 根据权利要求1或2中所述的等离子体显示装置,其特征在 于: 上述导热性薄片具有0.1至0.5mm的厚度。
7: 根据权利要求1所述的等离子体显示装置,其特征在于: 上述导热性薄片具有800至1000W/m℃的导热系数和0.1至 0.5mm的厚度。
8: 根据权利要求1所述的等离子体显示装置,其特征在于: 上述导热性薄片具有1至5W/m℃的导热系数和1至5mm的厚 度。
9: 根据权利要求1或2所述的等离子体显示装置,其特征在于: 在框架底盘的背面设置有散热片。

说明书


等离子体显示装置

    【技术领域】

    本发明涉及利用气体放电显示符号或图象的等离子体显示板(PDP),特别涉及包括有效地扩散等离子体显示板产生的热量的装置的等离子体显示装置及其制造方法。

    背景技术

    近来,带有大屏幕显示部件的扁、薄、轻的等离子体显示装置已用于比如便携式计算机的信息终端,而且其应用领域因其显示清晰和视角宽阔正在扩大。等离子体显示装置中,由相互熔接的前后玻璃板构成等离子体显示板,玻璃板之间的细小间隙内装有放电气体。气体放电产生的紫外线照射在后玻璃板的荧光体上,以实现荧光体的光发射显示。因此,经在气体中的反复放电,等离子体显示装置作为一个整体将达到相当高的温度。

    等离子体显示装置中,由于进一步提高了等离子体显示的显示亮度,使等离子体显示板会产生更多的热量,以致等离子体显示板的温度升高,并因比使等离子体显示板的显示特性变坏。长时间的激励等离子体显示板将导致比如驱动等离子体显示板驱动电路的可靠性下降,因而不利于等离子体显示板的运行和特性。同时,如果等离子体显示板中存在的较大温度差状态持续较长时间,那么就会使构成等离子体显示板的玻璃变形,从而导致玻璃的破裂。

    因此,为了降低工作中地等离子体显示板的温度和减少导致其破裂的玻璃变形,就应减小等离子体显示板的板中温度差和改进等离子体显示装置的运行和质量。作为等离子体显示装置这方面的一种公知的对策,是利用如图1所示的垫圈93把一对通风扇92安装在等离子体显示板91的背后,并如图2中箭头A所示将气流吹到等离子体显示板91上,从而降低等离子体显示板91的温度。

    这种情况下,按与垂直面平行的方向安装等离子体显示板91,分布在等离子体显示板91平面上的温度为如图3所示的自然对流的热量,因而高温部分和低温部分之间的温度差为正几十度。同时,等离子体显示板91的平面上的温度差随等离子体显示板91上显示的图象类型而增加,例如,如果象图4所示在黑色背景(黑色显示)上表现小壳度图象(明亮显示)的状态持续较长时间,亮图象和黑背景之间的温度差就显著地增加,导致构成等离子体显示板91的玻璃变形,因而造成等离子体显示板91的破裂。具体来说,如果等离子体显示板91的平面上的温度差达到20℃或更大,那么等离子体显示板91破裂的风险就较大。

    装配有通风扇92的普通等离子体显示装置中,可以降低等离子体显示板91的温度,但出现的问题是难减小等离子体显示板91的平面上的温度差。此外,现有技术的等离子体显示装置的缺点在于通风扇92的电机噪音很讨厌,为驱动通风扇92的电机需要电能,因需要设置安装通风扇92电机的空间使等离子体显示装置在整体上变得较大,而且通风扇92把带有灰尘的外部空气吸入等离子体显示装置的外壳,污染了外壳的内部。

    同时,公知的等离子体显示装置中,为了降低工作中的等离子体显示板的温度和整体提高等离子体显示装置的运行和质量,将底板部件附加在等离子体显示板的背面是较有效的。这种情况下,使等离子体显示板和底板部件互相密闭连接是很重要的。

    【发明内容】

    因此,本发明的基本目的在于提供消除上述现有技术缺点的等离子体显示装置,该装置中即使提高等离子体显示板的亮度,也可保持较低的等离子体显示板温度,并通过减小等离子体显示板平面上的温度差来保证较高的显示质量。

    为了实现本发明的这个目的,本发明的等离子体显示装置包括等离子体显示板和实质上与等离子体显示板平行的底板部件,其特征在于,等离子体显示装置还包括插入在等离子体显示板和底板部件之间的导热性介质,所述导热介质还起着缓冲介质的作用,从而使它与所述等离子显示板和所述底板部件实质上封闭接触,导热介质具备有第1和第2介质的两层结构,等离子体显示板和底板部件,实质上封闭接触使第1介质具有高于第2介质的导热系数,而且使第2介质也作为缓冲介质。

    采用本发明的上述配置的等离子体显示装置,由于工作中的等离子体显示板平面上的热量通过导热介质传给底板部件,从而分散在空气中,所以可降低等离子体显示板平面上的温度,并可减小等离子体显示板平面上的温度差。

    此外,通过消除等离子体显示板的弯曲,可增强导热性介质与等离子体显示板和底板部件的紧密连接,并且利用可作为缓冲介质的第2介质的功能,可减轻来自外部的对等离子体显示装置的碰撞。

    下面,通过参见附图对优选实施例的说明,本发明的目的和特征将成为显而易见的,其中:

    【附图说明】

    图1表示现有技术的等离子体显示装置的分解透视图(已参考);

    图2表示图1所示的现有技术的等离子体显示装置的剖视图(已参考);

    图3表示图1所示的现有技术的等离子体显示装置的等离子体显示板平面上温度分布示意图(已参考);

    图4表示显示在等离子体显示板上的图形类型的示意图;

    图5表示本发明第一实施例的等离子体显示装置的分解透视图;

    图6表示图5的等离子体显示装置的剖视图;

    图7表示本发明第二实施例的等离子体显示装置的剖视图;

    图8表示图5和图7所示的等离子体显示装置中的温度分布特性曲线;

    图9表示本发明第三实施例的等离子体显示装置的剖视图;

    图10表示图9的等离子体显示装置的底板部件的剖视图;

    图11表示图9的等离子体显示装置的耐热缓冲介质的俯视图;

    图12表示配有图11的缓冲介质的图10的底板部件的俯视图;

    图13表示图12的底板部件和缓冲介质的剖视图;

    图14表示图9的等离子体显示装置的导热性介质的液态固化剖视图;

    图15表示本发明第四实施例的等离子体显示装置的剖视图;

    图16表示图15的等离子体显示装置的底板部件的剖视图;

    图17表示制造图15的等离子体显示装置所采用的压模俯视图;

    图18表示配有图17压模的图16的底板部件的俯视图;

    图19表示图18的底板部件和压模的剖视图;

    图20表示图15的等离子体显示装置的导热性介质液态固化的剖视图;

    图21表示本发明第五实施例的等离子体显示装置的分解透视图;

    图22表示图21的等离子体显示装置底板部件的透视图;

    图23表示图21的等离子体显示装置的局部剖视图;

    图24表示改进图21的等离子体显示装置的等离子体显示装置的局部透视图;

    图25表示本发明第六实施例的等离子体显示装置的分解透视图;

    图26表示图25的等离子体显示装置的构成导热层的层片俯视图;

    图27表示图26的层片的侧视图;

    图28表示图25的等离子体显示装置的带有底板部件的等离子体显示板步骤的说明图;

    图29表示改进图26层片的层片俯视图;

    图30表示图29的层片的侧视图;

    图31表示另一个改进图26层片的层片的俯视图;和

    图32表示图31层片的侧视图。

    【具体实施方式】

    在说明本发明之前,必须指出在附图中用相同的参考符号表示相同的部分。

    下面参看附图,图5和图6表示本发明第一实施例的等离子体显示装置K1。等离子体显示装置包括等离子体显示板1、导热介质2和作为散热部件的底板部件3。有效地实现热量扩散的凸出体4装配在底板部件3上。导热介质不但适合减小等离子体显示板1平面的温度差,而且通过把等离子体显示板1的热量有效地传送给底板部件3,并从底板部件3扩散到空气而降低了等离子体显示板1的温度。同时,如果导热介质2由凝胶状态的软材料构成,导热介质2还可作为缓冲介质,防止来自外部的对等离子体显示板1的碰撞。

    本实施例中,用26英寸型的等离子体显示板作为等离子体显示板1。导热介质2的厚度为1至5mm并由凝胶状态的硅层构成,接着将铝制的底板部件3附加在等离子体显示板1的整个背面。当用120W的电能在等离子体显示板1的整个面上实现白色显示时,与未把导热介质2和底板部件3附加在等离子体显示板1的情况相比,等离子体显示板1的温度约下降了25℃。可用橡胶层代替硅层构成导热介质2。

    同时,由于等离子体显示板1和底板部件3有轻微的弯曲,所以最好使导热介质2有较高的柔韧性,以便把导热介质2带入密闭连接的等离子体显示板1和底板部件3中,从而不仅改善了等离子体显示板1至底板部件3的热量传导,而且利用导热介质使等离子体显示板1防止了来自外部的磁,为了有效地减小等离子体显示板1平面上的温度差和降低等离子体显示板1的温度,导热介质2最好有较高的导热系数。可是,如果用有高导热系数的材料构成导热介质2,那么材料中的金属含量就变大,因而使导热介质2的弹性和柔韧性下降。因此,图7所示的本发明第二实施例的等离子显示装置中,导热介质2有包括第一和第二介质6和7的二层结构。第一介质6由具有高导热系数的金属层或碳层构成,同时第二介质7由凝胶状态的软硅层或有标准导热系数的相同材料构成。通过把第一介质6的厚度减到0.1至0.5mm,可使第一介质6具备柔韧性。利用第一介质6,可减小由等离子体显示板1产生的热量造成的等离子本显示板1平面上的温度差。有效地利用第二介质7把在第一介质6上传送的热量传送给底板部件3,然后从底板部件3中扩散到空气中。同时,由于导热介质2有弹性,利用导热介质2可减轻其间等离子体显示板1的来自外部的振动和碰撞,以便有效地防止等离子体显示板1破裂,并保证导热介质2与等离子体显示板1和底板部件3密闭连接,而且有效地进行等离子体显示板1对底板部件3的热量传导。

    等离子体显示装置K2中,第一介质6采用导热系数为800至1000W/℃、厚度为0.1至0.5mm的碳层,同时第二介质7采用凝胶状态的硅,其导热系数为1至5W/m℃、厚度为1至5mm。利用这种导热介质2,可显示如图4所示的以黑色背景为底的中央部分为明亮图象的图象。这时,图8中的实线8表示沿线X-X(图4)的等离子体显示装置K2的等离子体显示板1的温度分布特性。另一方面,图8中的虚线9表示沿线X-X的等离子体显示装置K1的等离子体显示板1的温度分布特性。与虚线9表示的等离子体显示装置K1的温度分布特性相比,实线8表示的等离子体显示装置K2的温度分布特性,将等离子体显示板1平面上的热量从等离子体显示板1的中央部分更充分地向等离子体显示板1的各边部分扩散。结果,与等离子体显示装置K1的情况相比,显示降低了等离子体显示装置K2的等离子体显示板1平面上的温度差。这是因为作为第一介质6的碳层在其表面方向上具有800至1000W/℃的导热系数。虽然作为第一介质6在其厚度方向上的碳层导热系数低于在其表面方向上的导热系数,但利用如上述构成的薄碳层,在厚度方向上仍能把热量从等离子体显示板1中有效地传送到底板部件3上。

    等离子体显示装置K1和K2中,正如从图8的线8和线9中明显看到的,由于等离子体显示板1平面上的温度差小于20℃,所以能防止等离子体显示板1的破裂。

    可用铜箔、铝箔或类似物代替碳层构成第一介质6,同时可用橡胶代替硅层构成第二介质7。

    正如上述说明本发明第一和第二实施例中所明确指明的,由于把导热介质设置在等离子体显示板和底板部件之间,所以不仅降低了工作中等离子体显示板的温度,而且减小了等离子体显示板平面上的温度差,从而可获得高可靠的等离子体显示装置。此外,由于未采用原来必需的通风扇,所以消除了通风扇电机的噪音,节省了驱动通风扇电机的电能,而且不需要安装通风扇电机的空间。

    图9表示本发明第三实施例的等离子体显示装置K3。等离子体显示装置K3中,凹槽13形成在底板部件3的矩形边缘上,并把缓冲介质14填充在凹槽13中。将导热介质2设置在由缓冲介质14封闭的区域中,以便把缓冲介质14带入基本密闭连接的导热介质2中。

    下面,说明等离子体显示装置K3的制造方法。如图10所示,把凹槽13形成在底板部件3矩形边缘上,并比如使其宽度W为5.5mm,深度H为2mm。将有如图11所示的矩形状的缓冲介质14填充在这个凹槽13中,从而如图12和图13所示利用缓冲介质14封闭预定的区域。例如,缓冲介质14的宽度为5mm,高度为4mm。

    接着,如图14所示,把硅树脂胶作为导热介质2注入由缓冲介质14围住的区域中,然后固化。此时,在常压下升高温度,比如升至120℃,使硅树脂固化约20分钟,使其变成固态的导热介质2。这种情况下,缓冲介质14可具备耐热性。硅树脂胶可在常温下干燥,但在常温下固化硅树脂胶需要较长的时间周期。

    通过固化如上所述的液态硅树脂胶获得的固态导热介质2的厚度为2mm。通过将导热介质2附加在等离子体显示板1上,得到等离子体显示装置K3。

    可用硅带构成缓冲介质14。这种情况下,在已经固化液态导热介质之后,可从底板部件3中除去该带或在其未从底板部件3中除去时就可剥离。此外,这种情况下,凹槽13可不必在底板部件3上构成。

    同时,代替缓冲部件14,可将接收导热介质2的凹部形成在底板部件3的一个面上,对该面附加导热介质2,或可把阻止液态导热介质外流的框架仅设置在底板部件3的面上。

    上述等离子体显示装置K3的制造方法中,由于泡沫渗入在导热介质2和底板部件之间,所以可获得具有良好导热性和散热性的等离子体显示装置K3。

    图15表示本发明第四实施例的等离子体显示装置K4。应该指出,等离子体显示装置K4与等离子体显示装置K1是相同的。等离子体显示装置K4中,导热介质2设置在底板部件3上,并把等离子体显示板1设置成与导热介质2成基本封密的连接。

    下面,说明等离子体显示装置K4的制造方法。把图17所示的矩形环状框架模具16固定在图16所示的底板部件3上,致使由框架模具16密封的区域如图18和19所示。例如,框架模具16的宽度为5mm,高度为2mm。接着,如图20所示,把导热介质2的胶体渗入到由框架模具16密封的区域中,然后进行固化,获得固态导热介质2。这时,导热介质2的宽度为1至5mm,最好为约2mm。之后,从底板部件3中卸下框架模具16,并且把导热介质2附加在等离子体显示板1上。结果,得到等离子体显示装置K1。

    等离子体显示装置K4的制造方法中,由于泡沫未渗入在导热介质2和底板部件3之间,所以可获得具有良好导热性和散热性等离子体装置K4。

    同时,以上说明的本发明的第三和第四实施例中,导热介质2可由凝胶态的柔软材料构成,以便还可把导热介质2作为缓冲介质,使等离子体显示板1可防止来自外部的碰撞。

    正如上述说明本发明的第三和第四实施例中所明确指出的,由于导热介质设置在等离子体显示板和底板部件之间,所以降低了工作中等离子体显示板的温度,因此可获得高可靠性的等离子体显示装置。此外,本发明的第三和第四实施例的等离子体显示装置的制造方法中,能够获得具有良好导热性和散热性的等离子体显示装置,该方法中增强了导热介质与等离子体显示板和底板部件的密闭连接。

    图21表示本发明第五实施例的等离子体显示装置K5。等离子体显示装置K5包括机壳22和装在机壳22中的内部构件36。通过把前机壳24和后机壳相互组装构成机壳22。许多通风孔28和30分别形成在前机壳24上下部分箭头a所示的横方向上,玻璃或类似物制成的透光部分32设置在前机壳24的前面。另外,在后机壳26上下部分的侧方向上形成许多通风孔28和30。

    内部构件36包括底板部件38、用L形角板40将等离子全显示板42装在底板部件38的前面56上、由硅片或类似物构成并插入在底板部件38和等离子体显示板42之间的导热介质44,和支承在底板部件38的背面50上的多个电路板46。为了有效地将等离子显示板42的热量传送给底板部件38,设置了导热介质44。同时,为了激励和控制等离子体显示板42的光发射,设置了电路板46。

    用前板和后板组成等离子体显示板42。如图5上所看到的,前板有比后板长的横边和比后板短的纵边,因此,前板和后板有互相不重叠的部分。尽管未特别在图中标出,等离子体显示板42上与电极连接的终端却构成在前后板的这些未重叠部分。在其末端各自带有阴模连接器的许多薄膜导线(未示出)连接在焊接的终端上。阴模连接器分别连接在设在电路板46各边上的阳模连接器上(未示出)。因此,各个电路板46电连接等离子体显示板42。

    用铝铸制成底板部件38。如图22所示,散热用的许多散热片52在基本等于底板部件38的背面50的整个区域上与底板部件38一体地模压而成。各矩形形状的散热片52从底板部件38的背面50伸出,并相互平行地垂直延伸,以便横向保留相互间预定的间隔。本发明在这方面应用上进行的实验表明:当各个散热片52的宽度为约3mm、散热片52之间的间隙设为约3mm、同样地按间隔约6mm排列散热片52时,散热片52的散热效率是很好的。但是,必须指出,散热片52并不限于这些尺寸。此外,散热片52也不限于上述形状,还可垂直地划分成许多部分。

    如图22所示,在底板部件38的背面50上的中央区域54上的散热片52从背面50中伸出,由于下列原因高于底板38背面50的保特区域上的散热片52。即,通过将热量从等离子体板42经导热介质44传给底板部件38,升高了底板部件38的温度。可是,由于底板部件38的温度分布不均匀,而且向底板部件38的上部温度偏高,高于底板部件38保持部分的温度,因此,根据这一发现,应使底板部件38的背面50上中央区域54的散热效率大于底板部件38背面50的保持区域的散热效率。

    如图21所示,将电路板46排布在底板部件38背面的上中央区域54的周围。由此,由于底板部件38的背面50上中央区域54未被电路板46覆盖,所以底板部件38的背面50上中央区域上的散热片52的高散热效率就不受电路板46的妨碍。同时,用从底板部件38的背面50中伸出的螺栓(未示出)支承电路板46,并且与各散热片52的末端和底板部件38的背面50隔开,从而不直接与散热片52接触,也不直接接触底板部件38的背面50,如图23所示。

    另一方面,各自带有螺纹孔的多个螺丝座58从底板部件38的前面56的周边一齐伸出。由于螺丝座58是预先与底板部件38一齐压制的,所以与通过焊接、翻边等将螺丝座58后压制在底板部件38上的情况相比,可减少加工步骤的数量和降低成本。

    如图21和23所示,把角板40分别设置在矩形等离子体显示板42的四个边上,以使等离子体显示板42和导热介质44通过螺钉60穿入角板40的螺栓孔进入螺丝座58的螺纹孔固定在底板部件38上。用基本相互正交的相交板部分40a和40b构成各角板40。通过用泡沫材料制成的缓冲部件62,把平板部分40a与等离子体显示板42前面的周边压接,使等离子体显示板42经导热介质44固定在底板部件38的前面56上。

    同时,角板40的平板部分40b沿四个外周边表面64的每一个表面延伸。电连接的电路板46和等离子体显示板42的许多上述薄膜导线位于平板部分40b和底板部件38的外周边表面64之间。因此,当操作者通过卡紧组装好的内部构件36的边缘在后机壳26上安装组装好的内部构件36时,平板部分40b用来保护薄膜导线,使薄膜导线不受损伤。

    上述装配的等离子体显示装置K5中,当由等离子体显示板42的光发射进行显示时,由等离子体显示板42中放电所产生的热量提高了等离子体显示板42的温度。通过导热介质44,等离子体显示板42上产生的热量被传送到底板部件38上,并从与底板部件38整体模压的散热片52上有效地散发掉。由于这种热扩散在机壳22中加热的空气从机壳22的上部通风孔28中向外排出,同时,其温度为室温的空气从机壳22的下部通风孔30中流入。利用这种自然对流,冷却等离子体显示板42和电路板46。假设是最高室内温度为40℃,按照发明者在这方向进行的实验表明:机壳22中的温度可保持在不超过允许的最高温度,它等于40℃加室温的和。

    由于散热片52是与支承等离子体显示板42的底板部件38整体模压的,使底板部件38还可作为如上述的散热部件,所以能够获得自然的冷却构造,该结构中机壳22内的空气提供自然对流,从而冷却机壳22的内部。因此,由于不需要设置强制向外排出机壳22中空气而强制冷却机壳22内部的通风扇52,所以可消除诸如噪音、通风扇故障和强制通风造成的吸尘问题,并能降低生产成本。

    同时,等离子体显示装置K5中,采用了如上述的取消通风扇的非强制冷却构造。可是,等离子体显示装置K5中,也可设置通风扇,作为空气自然对流的一种补充,以促进机壳22中的空气流动。这种情况下,与现有技术的等离子体显示装置相比,由于可以减少图示的通风扇的数量,所以可减轻现有技术的等离子体显示装置的上述缺陷。

    图24表示改进等离子体显示装置K5的等离子体显示装置K5’。等离子体显示装置K5’中,又把辅助热扩散部件65设置在位于底板部件38的背面50上中央部分54的散热片52上,从而进一步提高底板部件38的上中央区域54上的散热片52的热扩散效率。由大致弯曲成U形结构的金属板65a和有方格图形的并固定在金属板65a的里边的金属板组件65b构成辅助热扩散部件65。许多正方的空气白区域66限定在辅助热扩散部件65中,从而按相同的方式垂直延伸为散热片52。各个空区域66并不限于正方形形状,还可为任何其它形状。本申请的发明者在这方面进行的实验表明:如果没置有辅助热扩散部件65,与没有设置辅助热扩散部件65的情况相比,底板部件38的温度还可进一步下降10℃。因此,就采用DC型等离子体显示板的等离子体显示装置来说,由于DC等离子体显示板上产生的热量大于AC型等离子型显示板的热量,所以特别适合额外设置辅助热扩散部件65。

    同时,图24中,将辅助热扩散部件65设置在位于底板部件38背面50的上中央区域54上的散热片52上。可是,还可以这样排列散热片,即把在底板部件38的背面50的上中央区域上的散热片52设置成与底板部件38背面50的保持区域上的散热片52有相等的高度,即,底板部件38的背面50上的所有散热片52有相同的高度,然后将辅助热扩散部件65设在位于底板部件38上中央区域54上的散热片52上,从而提高底板部件38的背面50的上中央区域54上的散热片52的热扩散效率。

    正如从本发明第五实施例的以上说明中明确指出的,通过把散热片与底板部件整体地模压,可有效地将热量从等离子体显示板中扩散到底板部件上。由于这种热扩散加热的机壳中的空气从机壳上部的通风孔中向外排出,而室温温度的空气从机壳下部的通风孔中流入,产生自然的空气对流。因此,冷却了等离子体显示板和电路板,机壳中的温度可保持在不超过允许的最高温度的条件下。

    由于还可将支承等离子体显示板的底板部件作为有高热扩散效率的热扩散板,采用由空气自然对流冷却机壳内部的非强制冷却构造,所以不需要配置通风扇。因此,可以减轻诸如噪音、通风扇故障和强制通风引起吸灰等缺陷,并可降低生产成本。同时,当把通风扇作为空气自然对流的辅助工具时,与现有技术的等离子体显示装置相比,可减少图示的通风扇的数量,从而可消除现有技术的等离子体显示装置的上述缺陷,并可降低生产成本。

    图25表示本发明第六实施例的等离子体显示装置K6。按照相同于等离子体显示装置K5的方式,等离子体显示装置K6包括机壳22和内部构件36。由具有良好导热性和柔韧性材料制成的薄层片构成内部构件36的导热介质44,比如用硅树脂构成导热介质,并且不但将其用来有效地把等离子体显示板42上产生的热量传给底板部件38,而且还可用作缓冲介质。如图26所示,导热介质44有大致等于等离子体显示板42的尺寸。同时,利用在方格图形中没有任何间隙地排列多个层片70,构成导热介质44。

    图26和27分别表示面对等离子体显示板42和底板部件38有相反面70A和70B的薄片70。在薄片70的面70A上按矩阵形状构成多个凸出部74,使方格凹槽72限定在凸出部74之间。薄片70为正方形,其边长为100mm,厚度为2mm。凸出部74呈方形,长度为13mm,高度为1mm,同时凹槽72的宽度W为2mm。可是,这些形状和尺寸是不受限制的,还可进行各种改变。

    如图28所示,把等离子体显示板42与底板部件38一起组装。首先,把厚度基本与导热介质44相等的四段双面胶带78分别贴在底板部件38前面56的四个外周边缘上。然后,把由排列好的薄片70构成的导热的导热介质44放在底板部件38的前面56上,使各薄片70的面70A,即各薄片70的凸出部74面向等离子体显示板42。接着,利用轧辊或类似物,完全压出底板部件38和导热介质44之间的空气,使导热介质44与底板部件38形成封闭接触。由于导热介质44的反面有粘性,所以一旦导热介质44与底板部件38形成封闭接触,在底板部件38和导热介质44之间的就不会渗入空气。

    然后,将等离子体显示板42放在双面胶带78和导热介质44上,并用手从上面轻轻压平双面胶带78和导热介质44。结果,把等离子体显示板42与导热介质44的薄片70的各凸出部74形成压紧接触,使方形的凸出部74压扁而横向膨胀。在凸出部74的这种膨胀期间薄片70的各凹槽72作为排气通道向外排气,并最终被彭胀的凸出部74挤占而消失。因此,由于基本完全消除了导热介质44和等离子体显示板42之间的空气层,所以使导热介质44和等离子体显示板42相互形成封闭接触,而且利用双面胶带78把等离子体显示板42固定在底板部件38上。由于等离子体显示板42不是透明的,所以不可能观察到排气过程。可是,它可以通过实验证实,即当透明的玻璃板与导热介质44形成压紧接触时,玻璃板与导热介质44就形成在其间没有空气层形成的封闭接触。

    同时,当等离子体显示板42已压紧导热介质44时,即使空气层保留在凹槽72内,作为整体的等离子体显示板42也可基本均匀地与导热介质44接触,因此,空气层基本均匀地保留在导热介质44和等离子体显示板42之间。因此,与空气层局部地保留在导热介质44和等离子体显示板42之间的情况相比,改善了导热性,并使导热性在等离子体显示板42的整个区域中是均匀的。

    等离子体显示装置K6中,把凸出部74和凹槽72设置导热介质的其中一个面上,而把等离子体显示板42放在导热介质44的背面上并背对该面轻轻压平,以便向外排出如上所述的导热介质44和等离子体显示板42之间存在的空气。因此,由于导热介质44和等离子体显示板42可以容易地互相形成封闭接触,所以可以使等离子体显示板42的整个区域上的导热性是均匀的。

    图29和30表示改进图26的薄片70的薄片70a。薄片70a中,排列着多个圆形凸出部74a,以便形成相互间的接触。如图30所示,各凸出部74a有凸圆体表面,使其厚度从其中央部分到其外边缘逐渐减小。没有凸出部74a的凸出部74a和区域72a之间的界面80对应于层片70的凹槽72。薄片70a可获得与薄片70相同的效果。

    同时,图31和32表示另一个改进薄片70的薄片70b。薄片70b有凸圆体表面,使其厚度从其中央部分到其外边缘逐渐减小。因此,由装配薄片70b构成导热介质44时,薄片70b的中央部分就作为薄片70的凸出部74,同时薄片70b的外边缘就作为薄片70的凹槽72。因此,由薄片70b构成的导热介质44可获得与用薄片70构成的导热介质44相同的效果。

    凸出部74和凹槽72可形成在导热介质44的其中一个面上,还可形成在导热介质44的反面。同时,由排列多个薄片70、70a或70b可构成导热介质44,也可由基本等于等离子体显示板42的尺寸和分别产生凸出部74和凹槽72的效果的凸出部和凹槽的单个薄片构成它。

    正如本发明第六实施例的上述说明中所明确指出的,将凸出部和凹槽设置在导热介质的其中一个面上,把等离子体显示板放在导热介质面上,并用于轻轻压平导热介质背面,以便向外排出导热介质和等离子体显示板之间存留的空气。因此,本发明第六实施例中,由于在等离子体显示板和导热介质之间未存积大量空气的情况下,等离子体显示板和导热介质可互相容易地形成封闭接触,所以在等离子体显示板的整个区域上,可使导热性是均匀的。

等离子体显示装置.pdf_第1页
第1页 / 共33页
等离子体显示装置.pdf_第2页
第2页 / 共33页
等离子体显示装置.pdf_第3页
第3页 / 共33页
点击查看更多>>
资源描述

《等离子体显示装置.pdf》由会员分享,可在线阅读,更多相关《等离子体显示装置.pdf(33页珍藏版)》请在专利查询网上搜索。

一种等离子体显示装置,其特征在于包括:内部单元,具有框架底盘和安装于框架底盘的前面上的等离子体显示板;导热薄片,插在框架底盘和等离子体显示板之间;电路板,用以驱动等离子体显示板的光发射,并设置在框架底盘的背面上;和壳体,由前壳体和后壳体构成,用以容纳内部单元;其中,上述后壳体形成有多个通风孔。 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 基本电气元件


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1