确定高速分组数据无线通信系统中的数据速率的方法和装置.pdf

上传人:111****112 文档编号:1120003 上传时间:2018-04-01 格式:PDF 页数:29 大小:1.33MB
返回 下载 相关 举报
摘要
申请专利号:

CN01821314.6

申请日:

2001.10.24

公开号:

CN1493133A

公开日:

2004.04.28

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效|||公开

IPC分类号:

H04L12/56

主分类号:

H04L12/56

申请人:

高通股份有限公司;

发明人:

S·A·伦比; L·拉祖莫夫; 鲍刚; 魏永斌

地址:

美国加利福尼亚州

优先权:

2000.10.25 US 09/697,372

专利代理机构:

上海专利商标事务所

代理人:

李家麟

PDF下载: PDF下载
内容摘要

在无线通信系统(50)中实现了分组数据和低延迟数据组合传输的方法。在一个实施例中,并行的信号信道向接收机(56,58,60)提供指示分组数据目的收件人的信息。该信息也可识别用于分组数据传输的传输信道。各个接收机可随后选择性地只解码分组数据,其中信息用于识别接收机作为目的收件人。如果目的收件人是另一移动单元,则打包存储于缓冲器的数据可以忽略。在一个实施例中,信息可与并行信道的分组数据同时发送。在一个实施例中,信息是嵌入在高比率分组数据传输中。

权利要求书

1: 一种无线通信装置,其特征在于,它包括: 第一处理器,用于接收第一指示符,所述第一指示符对应于已有分组数据 传输功率;以及 校正单元,用于确定作为第一指示符和所接收的导频信号强度的函数的分 组数据传输速率指示符。
2: 如权利要求1所述的无线通信装置,其特征在于,第一指示符对应于 已有分组数据传输功率对导频信号强度的比率。
3: 如权利要求2所述的无线通信装置,其特征在于,所述导频信号强度 是导频信号信噪比的量度。
4: 如权利要求3所述的无线通信装置,其特征在于,它还包括: 调整结点,它与所述第一处理器和所述校正单元耦合,所述调整结点用来 根据用于所述分组数据传输所确定信噪比来调整所述导频信号的信噪比。
5: 如权利要求4所述的无线通信装置,其特征在于,所述分组数据传输 速率指示符是用于分组数据传输的信噪比。
6: 如权利要求1所述的无线通信装置,其特征在于,所述装置用来通过 数据请求信道,传输所述分组数据传输速率指示符。
7: 如权利要求6所述的无线通信装置,其特征在于,所述分组数据传输 速率指示符是数据速率。
8: 如权利要求1所述的无线通信装置,其特征在于,所述装置用来在无 线通信系统中支持分组数据传输和低延迟数据传输。
9: 一种无线通信系统中的方法,所述系统用来传输分组数据和低延迟数 据,所述系统具有总的有效发射功率,其特征在于,所述方法包括: 使用第一功率来建立至少一个低延迟通信链路; 确定有效分组数据通信功率作为总有效发射功率和第一功率的函数; 根据有效分组数据业务功率来确定分组数据速率。
10: 如权利要求9所述的方法,其特征在于,至少一个低延迟通信是语音 通信。
11: 如权利要求9所述的方法,其特征在于,所述第一功率是导频信号的 信噪比,并且 其中,确定有效分组数据业务功率的步骤还包括: 确定总有效发射功率与所述第一功率的业务-导频比。
12: 如权利要求11所述的方法,其特征在于,确定分组数据比的步骤还 包括: 通过根据业务-导频比而调整导频信号的信噪比,从而建立分组数据业务 的信噪比。
13: 一种无线通信装置,其特征在于,它包括: 第一处理器,用来接收第一指示符,所述第一指示符对应于有效业务-导 频信号强度比; 测量单元,用来接收导频信号,并确定导频信号的导频信号-噪声比; 求和结点,它与所述测量单元和所述第一处理器耦合,所述求和点用来采 用第一指示符调节信噪比来形成业务信号-噪声比;以及 校正单元,用来接收所述业务信号-噪声比,并确定用于传输的相关数据 速率。

说明书


确定高速分组数据无线通信系统中的数据速率的方法和装置

    【技术领域】

    本发明涉及无线数据通信。更具体地说,本发明涉及适用于在无线通信系统中传输高速分组数据和低延迟数据的新颖和改进的方法和装置。

    背景技术

    无线通信数据传输的增长需求和采用无线通信技术而扩展的可用服务已经引发了特殊数据服务的发展。一种这类服务被称之为高速数据率(HDR)。在“TL8080‑54421‑1 HDR空间接口技术规范”中提出了一种举例HDR类系统,它可以称之为“HAI技术规范”。HDR主要提供了在无线通信系统中传输数据包的有效方法。但在需要语音和分组数据服务两者的应用中会出现一些困难。当语音通信是交互的并因此而实时处理时,语音系统就可认为是低延迟数据系统。其它的延迟数据系统包括:视频、多媒体、以及其它实时数据系统。当HDR系统中的基站环绕这各种移动用户,并在每次向其中一个移动用户发送数据时,HDR系统就不仅仅是用于语音通信的,而是可用于优化数据系统。环绕会对传输处理引入延迟。当该信息不是在实时使用时,这类延迟对数据系统来说是可以容忍。相反,对于语音通信来说,则环绕延迟将难以接受。

    经常需要一种组合系统来用于传输高速包数据信息和低延迟数据信息,例如,语音信息。也需要确定在该组合系统中高速包数据率的数据速率的方法和装置。

    【发明内容】

    所披露的实施例提供了适用于在无线通信系统中高速分组数据率和低延迟数据传输的新颖和改进的方法。在一个实施例中,无线通信系统中的基站首先设置具有有效高优先权的低延迟数据,随后根据在满足低延迟数据之后的有效功率来确定分组数据的服务。分组数据服务每次只向一个移动用户发送分组数据。另一实施例可以每次向多个移动用户提供分组数据,将可用功率分配在多个用户之间。在给定的时间,一个用户可以根据信道质量来选择目标收件人。基站确定可用功率与导频信道功率的比率并且提供与所选择移动信道的比率。该比率被称之为“业务‑导频”比率,或“T/P”比率。移动用户使用该比率来计算数据率并将该信息发回基站。

    在一个实施例中,基站向用户提供了“广播和导频”比率,或“B/P”比率,其中,该比率可视为广播功率(即,基站总的可用传输功率)与导频功率(即,广播功率用于导频信道的功率部分)的比率。移动用户根据基站的要求确定归一化数据速率,其中,该归一化数据速率是B/P的函数。将归一化的数据速率发送至基站并且产生适用于合适数据速率的决定。随后再将所选择的数据速率发送给移动用户。

    在举例的实施例中,并行的信号信道用于向移动用户提供T/P比率信息。并行信号信道可以采用分离的载波频率来实现,或者采用适用于产生分离信道的各种方法中的任意方法来实现。

    根据另一实施例,可以通过分组数据传送信道来提供T/P比率,其中,在数据分组的头部包括了T/P比率,或者与分组数据一起提供了T/P比率。

    另一实施例可以实现根据导频信道的SNR来评估传输信道的SNR的另一特性,其中,向移动用户提供的该特性可用于确定数据率。移动用户要求在所确定的数据率下或在低于所确定的数据率下进行传输。

    一方面,无线通信装置包括:第一处理器,它工作于接受第一指示符的第一处理器,第一指示符对应于可用分组数据传输功率;以及校正单元,该校正单元工作于确定分组数据传输率指示符是第一指示符的函数并接受导频信号的强度。

    另一方面,在无线通信系统中,系统工作于传输分组数据和低延迟数据,该系统具有总的可用传输功率,该方法包括使用第一功率来建立至少一个低延迟通信链路;确定可用分组数据业务功率是总的可用发射功率和第一功率的函数;根据可用分组数据业务功率来确定分组数据速率。

    还有一方面,无线通信装置包括:第一处理器,该第一处理器工作于接受第一指示符,第一指示符对应于可用业务‑导频信号强度的比率;测量单元,工作于接受导频信号并确定导频信号的导频信号‑噪声比;求和结点,它与测量单元和第一处理器相耦合,求和单元工作于调整第一指示符的信号噪声比以形成业务信号‑噪声比;以及,校正单元,它工作于接受业务信号‑噪声比并确定相关的传输数据速率。

    【附图说明】

    从以下结合附图所阐述的详细讨论中,本披露方法和装置的性能、目的和优点将变得更加清晰,在以下附图中,类似参考特征的标识将对应于全文,其中:

    图1以方框图形式说明了高数据速率(HDR)协议无线通信系统的一个实施例;

    图2说明了讨论图1所示HDR系统操作的状态图;

    图3以图形方式说明了图1所示HDR无线通信系统中多个分组数据用户所采用的模式;

    图4以图形方式说明了图1所示HDR无线通信系统中用户所接收的功率;

    图5以方框图形式说明了根据一个实施例包括低延迟数据用户的HDR无线通信系统;

    图6‑8以图形方式说明了根据各实施例在HDR无线通信系统中的用户所接受的功率;

    图9以方框图形式说明了根据一个实施例在HDR无线通信系统中的接收机部分;

    图10以流程图形式说明了根据一个实施例用于处理在实现信令信道的无线通信系统中的业务数据的方法;

    图11以流程图形式说明了根据一个实施例用于确定在无线通信系统中传输是数据速率的方法。

    【具体实施方式】

    要求一个系统能同时实现高比率分组数据服务和低延迟、语音类型服务,这是一项很困难的任务,因为在语音服务和数据服务之间存在着明显的差异。更具体的说,语音服务具有严格的和预定的延迟要求。典型的是,总的语音帧的单向延迟必须小于100ms。与语音相比,数据的延迟就变成了一个可变的参数,该参数可用于优化数据通信系统的效率。当提供给指定用户的信道条件随着时间而变化时,就有可能根据信道的条件选择较好的时间来传输数据包。

    在语音和数据服务之间的另一差异涉及用户所有用户的固定和公用等级服务(GOS)的语音服务需要。例如,在数字系统中,GOS要求随所有的用户提供固定和相等的传输速率,并且对语音帧的帧误差率(FER)来说,其延迟不得大于最大容许数值。相反,对数据服务来说,GOS是不固定的,并且在各个用户之间是可以变化的。对于数据服务来说,GOS可以是一个优化的参数,它可以用于提高数据通信系统的整体效率。数据通信系统的GOS一般可定义为在预定量的数据传输中所发生的总的延迟,下文将预定量的数据称之为数据包。在语音和数据服务之间还有一个差异是要求能通过软越区转换来提供可靠的通信链路,例如,在所举例的CDMA通信系统中。软越区转换回产生来自两个或多个基站的冗余传输以提高可靠性。然而,对数据传输来说,并不需要这类多于的可靠性,因为接受的数据包出错是可以重新发送的。对于数据服务来说,用于支持软越区转换的传输功率能够更有效地用于传输其它数据。

    与语音和其它低延迟数据通信相比,高数据率数据通信一般都对传输采用打包切换技术,而不采用电路切换技术。将数据分成小组,附加控制信息形成头和/或尾。数据和控制信息的组合形成了数据包。当数据包通过系统传输时,就会引入各种延迟,甚至于包括丢掉一个或多个包和/或包的一个部分或多个部分。HDR和其它分组数据系统一般都容许时间随延迟的数据包和丢掉的数据包而变化。这就有可能通过对优化信道条件调度传输来利用分组数据系统的延迟容许。在一个实施例中,可根据各个传输连接的质量来调度对多个用户的传输。传输每次都使用全部可用功率向多个用户中的每一个用户传输数据。这就会引入可变的延迟,特别是多个用户不能够实现了解目的收件人、传输的调度时间、数据速率、和/或配置信息,包括调制技术、信道编码,等等。在一个实施例中,若不是各个接收机都建立了这类信息,则接收机就要求数据速率和对应的配置。预定的调度是由预定的算法来确定的并尾同步的信息发送。

    在需要数据速率之前,接收机确定最佳的数据速率,其中,数据速率可以基于可变的传输功率。数据速率与传输功率和信道的质量成比例。正如文中所使用的,组合系统是一个能够控制低延迟数据传输和分组数据传输的系统。正能够控制语音和分组数据传输的组合系统中,可用功率以及可用数据速率都可以随语音活动时间而变化。接收机在确定数据速率的过程中并不了解系统能够的语音活动。组合系统的一个例子是宽带码分多址,称之为“W‑CDMA”,例如,它“适用于1.85至1.95GHz PCS应用的W‑CDMA(宽带码分多址)空间接口兼容标准ANSI J‑STD‑01草案标准”。另一系统包括称之为“cdma2000标准”,它适用于“cdma2000扩展频谱系统的TIA/EIA/IS‑2000标准”,或其它各用户连接的系统。

    图1说明分组数据系统20,它包括由HAI技术规范所定义的协议。在该系统20中,基站22与移动站26至28相通信。各个移动站26‑28是由从0至N的索引值来识别,N是在系统20中的移动站的总数。分组数据信道24可视为一个复用器,来解释可切换的连接。基站22可以认为是一个用于提供与用户连接的“访问终端器件”,特别是,每次只连接一个用户。值得注意的是,访问终端一般都连接着计算器件,例如,膝上电脑或者个人数字助理。访问终端甚至于是具有广域网访问能力的蜂窝电话。同样,分组数据信道24可以视为一个“访问网络”,它用于提供在分组交换数据网络和访问终端器件之间的数据连接。在一个例子中,基站22将移动站26‑28连接着互联网。

    在典型的HDR系统中,分组数据通信将一个链路延续到所选择的收件人,其中分组数据信道24每次只调度各种移动站中的一个。前向业务信道指的是从基站发出的数据,反向业务信道指的是从移动站26‑28发出的数据。分组数据系统20通过在给定时间里对一个用户只构成一条链路来调度用户。这情况不同于同时保持多个链路的低延迟数据传输系统。单条链路的使用允许对所选择的链路具有更高的传输数据速率并且通过优化至少具有一个链路的信道条件来优化传输。理想的情况是,基站只有在最佳的条件下才能使用信道。

    移动站26‑28的用户希望数据服务能提供通过数据速率控制(DRC)信道到基站22的前向业务信道的数据速率。根据接收到的信号质量来调度用户,其中,该调度也要确保根据公正的标准来调度用户。例如,公正标准防止系统偏爱与一些接近基站的移动用户而疏远一些远离基站的移动用户。所要求的数据速率是基于在调度用户处所能接收到的信号质量。测量载波和干扰的比率并用于确定适用于通信的数据速率。

    图2说明了图1所示系统20操作的状态图,例如,HDR系统的操作是与HAI技术规范相一致的。状态图讨论了一个移动用户Msi的操作。在状态30,标记尾“INIT”,基站24采集对分组数据信道24的访问。在该状态中,初始化包括采集前向导频信道和同步控制。一旦完成了初始化之后,操作就转移到状态32,标记尾“IDLE”。在IDLE状态中,关闭了对用户的连接并且分组数据信道24等待下一步打开连接的命令。当调度了移动站(例如,Msi)时,操作就转移到状态34,标记为“TRANSIMT”。在状态34,进行对Msi的传输,其中,Msi使用反向业务信道,而基站22则使用前向业务信道。如果传输或连接失败或者传输被中断,操作就返回到IDLE状态32。如果调度了移动站26‑28中的另一个用户,则传输可以中断。如果调度了在移动站26‑28以外的新用户,例如,MSj,则操作就转移到INIT状态30,以建立与其的连接。这样,系统20就能够调度好用户26‑28并且也能通过其它访问网络连接用户。

    调度好的用户允许系统20通过提供多用户的多样性优化对移动站26‑28的服务。图3说明了与移动站26‑28内的三个移动站MSO、Msi和MSN相关的使用模式的例子。各个用户以dB所接受功率的图形是时间的函数。在时间t1,MSN接受到强烈的信号,而MSO和Msi没有接受到强的信号。在时间t2,MSi接受到强烈的信号,而在时间t3,MSN接受到强的信号。因此,系统就能够在时间t1周围调度与MSN的通信,在时间t2周围调度Msi,在时间t3周围调度MSO。基站22至少是部分根据接受到来自各个移动站26‑28的DRC来确定该调度。

    图4说明了系统20中所举例的HDR传输。导频信道传输是采用分组数据信道来分布的。例如,导频信道使用从时间t0至t1的所有可用功率,以及从时间t2至t3的所有可用功率。分组数据信道使用从时间t1至t2的所有可用功率,以及从时间t3等等的所有可用功率。各个移动站26‑28根据导频信道所使用的总的可用功率来计算数据速率。该数据速率与可用功率成比例。当分组数据系统20仅仅向移动站26‑28传输分组数据时,导频信道就能正确地反映可用功率的计算。然而,当语音和其它低延迟数据服务耦合在无线通信系统中时,该计算就变得十分复杂。

    图5说明了根据一个实施例的CDMA无线通信系统50。基站52与多个移动用户通信,它可以采用的服务包括,但并不限制于,低延迟只是数据的服务,例如,语音服务,低延迟数据和分组数据服务,和/或分组只是数据的服务。该系统实现了适用于传输分组数据服务的cdma2000兼容的协议,它可采用低延迟数据服务同时工作。在给定的时间内,移动站58和60(MS1和MS2)只使用分组数据服务,移动站56(MS3)使用分组数据服务和低延迟数据服务,而移动站62(MS4)只使用语音服务。基站52通过前向和反向信道72保持与MS462的通信,以及通过前向和反向信道70保持与MS3 56的通信。对于HDR通信来说,基站52调度用户通过分组数据信道54来数据通信。HDR与MS3 56的通信通过信道64,与MS1 58的通信通过信道66,以及与MS2 60的通信通过信道68。各个分组数据服务用户在相基站52的收件人DRC中提供数据速率的信息。在一个实施例中,系统50在一个给定的时间周期中只调度一个分组数据连接。在另一实施例中,可以同时调度多个连接,其中多个链路中的每一个链路都只使用一部分的可用功率。

    在图6中图形说明了根据一个实施例的系统50的操作。同时,持续提供导频信道的系统是一个典型的低延迟数据系统。在传输初始化、处理和中止的过程中,根据通信的要求,低延迟数据信道所使用的功率随时间而连续变化。在完成导频信道和低延迟数据服务之后,分组数据信道使用可用功率。分组数据信道也被认为是一个集中的补充信道(PSCH),它包括在专用和公用信道定位之后系统的可用资源。正如图6所说明的,动态资源定位涉及集中所有不使用的功率和频谱扩展代码,例如,Walsh代码,来形成PSCH。对于PSCH可用最大广播功率,它可称作为为Iormax。

    根据一个实施例,PSCH信道格式定义了并行的子信道,各个子信道都具有独特的频谱扩展代码。随后,对一帧数据进行编码、交织和调制。通过子信道来解复用所产生的信号。在接收机一端,对信号一起进行求和,来重建帧。以每槽较低帧率的较长帧提供了可变帧长度编码方案。各个编码包分成了子数据包,其中,通过一个或多个槽来传输各个子数据包,提供可增加的冗余。

    与图4相比,其它与HDR传输有关的低延迟数据引入了用于测量可用功率的可变底层。特别是,在图4所说明的仅仅分组数据的系统中,所有扩展频谱代码,例如,Walsh代码,都可用于所选择的传输连接。当语音或低延迟数据服务附加于分组数据服务时,一些可用的代码会随着时间的变化而变成可变化的。随着一些语音或低延迟数据服务的变化,一些代码可用于传输数据的变化。

    正如图6所示,在从t0至t1的时间周期中,调度了MS1,以及在从t1至t2的时间周期中,调度了MS2。在从t2至t3的时间周期中,连接着多个分组数据的连接,包括MS1,MS3和MS4。在从t3至t4的时间周期中,再次只调度MS1。正如所说明的那样,整个从t0至t4的时间周期,低延迟数据信道所消耗的功率持续变化,影响着适用于分组数据通信的可用功率。在各个移动站计算接受传输之前的数据速率时,如果在没有相应数据速率变化的条件下减小可用功率,就会在传输过程中出现问题。为了能向移动站56‑60提供有关可用功率的当前信息,基站52确定可用功率与导频信道功率的比率。本文将该比率称之为“业务‑导频比”或“T/P比”。基站52向各调度好的移动站56‑60提供该比率。移动站56‑60使用与导频信道的SNR结合的T/P比来确定数据速率,其中,导频信道的SNR被称之为“导频SNR”。在一个实施例中,根据T/P比率来调整导频SNR,从而计算“通信SNR”,其中,通信SNR用于校正数据速率。随后,移动站56‑60向基站52回传数据速率作为DRC数据速率的请求。

    在一个实施例中,T/P比设置在数据包的头部并且可以嵌入或穿插在分组数据业务之间的高比率分组数据信道中。正如图7中所说明的那样,T/P比率信息在通信之前传输并提供移动站56‑60,用于更新随低延迟数据信道变化的可用功率相关的信息。这类变化也影响可用于传播信息信号的代码的数量,例如,Walsh代码的数量。可用功率越低和可用代码越少会引起降低数据速率。例如,在一个实施例中,发给指定用户的分组数据,或者当多个分组连接可用时发送给所有用户的分组数据,都可以在对应于CDMA系统的Walsh代码16‑19信道中传输。

    在图8所说明的举例实施例中,并行的信号信道用于向移动用户提供T/P比率信息。并行信号信道是由传播Walsh代码载波的低比率信道。并行的信道可将用于通信的信道以及所使用的代码类型传输到目的收件人。并行信号信道可以采用扩展载波频率的方法来实现,或者采用各种产生分离信道的方法中的任意方法来实现。

    值得注意的是,发送给指定用户的分组数据可以在一个或多个实现选好的信道传输。例如,在CDMA无线通信系统的一个实施例中,将Walsh代码16至19指定为数据通信。在图8所说明的举例实施例中,信号信息在具有低传输比率的扩展信道中传输。信号信息可以采用数据包同时发送。信号信息指示了数据包的目的收件人、数据包传输信道,以及所使用的代码。信号信息可以采用分离Walsh代码或者可以采用嵌入或穿插的方法时间复用到高速率数据中。

    在一个实施例中,信号信息编码成比数据包的帧短的帧(例如,头部),允许接收机能解码信号信息并同时产生处理决定。所接受到的数据可以是接收机的潜在目的,可将其缓存起来等待处理的决定。例如,如果接收机不是数据的目的收件人,则接收机可以放弃所缓存的数据或者可以中断数据的任何预处理,例如,缓存,等等。如果对接收机来说没有包含信号信道,则接收机可以放弃缓存器,否则,接收机使用在信号信息中表示的参数来解码所缓存的数据,减小系统的任何反应时间。

    在一个实施例中,并行信号信道传输给多个用户。当多个用户能够区分出发送各个用户的数据时,多个用户中的每一个用户也就能够接受到数据的公用包。这样,就通过信号信息提供了配置信息,并且各个用户都能够接受和解码数据包。在一个实施例中,信息广播给多个用户,其中也广播了一组识别符。移动用户属于实现已经了解该组识别符的一组。该组识别符可以设置在头信息中。组识别符可以是唯一的Walsh代码或者是其它识别组的部件。在一个实施例中,移动用户可以属于多个组的。

    图9说明了适合于在系统50中分组数据服务移动站80的一部分。T/P比率信息提供给T/P处理器82。导频信号提供给SNR测量单元84,用于计算所接受到的导频信号的SNR。将T/P比率和导频SNR的输出提供给乘法器86,用于确定通信SNR。随后,又将通信SNR提供给数据速率校正器88,该校正器进行通信SNR与相关数据速率的适当映射。数据速率校正器88随后产生用于通过DRC传输的数据速率。在移动站80这部分所完成的功能可以采用专用硬件、软件、中间件、或者它们的组合来实现。

    T/P比率可以采用图8所说明的并行信号信道来传输。当接收机根据T/P比率来确定数据速率时,信号信息可以不包括数据速率。随后,接收机根据传输的同步信息确定数据的到达时序。在一个实施例中,产生分离的信号作为时序信息。采用并行的方式将信号信息传输给数据。在另一实施例中,信号信息嵌入在数据中。

    图10说明了根据一个实施例在具有分组数据和低延迟数据传输的组合无线通信系统中处理数据的方法100。在步骤102,移动站接受通信帧,该通信帧是通过通信信道所接受到的信息。在步骤104,缓存通信帧。该缓存允许移动站能在没有丢失传输数据的条件下掌握以后时间内的信息。例如,可以缓存所接受到的数据,同时进行其它处理。或者,在本实施例的应用中,缓存延迟数据的处理,直至移动站确定数据的目的收件人。对于其它移动站为目的的数据不进行处理,并且与保存有效处理能力无关。当移动站意识到自身就是目的收件人时,缓存的数据可用于恢复和处理。缓存的数据表示接受到无线电频率的样本。另一实施例可以在没有缓存信息的条件下确定传输的数据速率,其中所接受到的数据可以在没有先存储于缓存器的条件下进行处理。

    继续参照图10,在步骤104,移动站解码与通信帧有关的收件人信息。在决定菱形108,处理确定指定的移动用户是否与目的收件人相匹配。如果不匹配,处理就转至步骤10,放弃缓存的通信帧。随后,处理再回到步骤102,去接受下一个通信帧。如果移动用户与目的收件人相匹配,则在步骤112解码通信信道帧,并且处理转至步骤102。对小部分传输的解码能力和避免不必要的解码和处理可以提高移动用户操作的效率以及减小与上述有关的功率消耗。

    图11说明了根据一个实施例确定在组合无线通信系统中的数据速率的各种方法。在步骤122,移动站通过通信和导频信道接受信号。在步骤124,移动站根据所接受到的导频信号来确定“导频SNR”。在本实施例中,在指定为导频传输的唯一信道中传输导频信号。在另一实施例中,导频信号可以嵌入在一个和多个其它信道上的一个和多个其它传输中。在一个实施例中,导频信号以不同于通信信道的预定频率来传输。对于分组数据传输来说,基站和各个移动站确定传输的数据速率。在一个实施例中,基站确定数据速率并通知移动站。在另一实施例中,移动站确定数据速率并通知基站。在还有一个实施例中,基站和移动站商议数据速率,其中各自向对方提供信息。决定菱形126根据其中产生的数据速率的决定来分离处理流。如果是由移动站产生数据速率的决定的,则处理就转至步骤136。如果移动站未能产生数据速率的决定,则处理就转至步骤128。

    在一个实施例中,确定数据速率的方法涉及到移动站和基站的商议,在该商议中,移动站确定最大可获得的数据速率。最大可获得的数据速率表示移动站是基站唯一接收机的可能的数据速率。在这种情况下,来自基站的总的传输可用功率是专用于该移动站。正如所说明的,在步骤128,移动站接受到广播和导频比率,或B/P比率。广播功率是基站的总的传输功率。导频功率是基站用于传输导频信号所消耗的功率。移动站在步骤130将归一化数据速率确定为B/P比和导频SNR的函数。如果所有的广播功率都能对与可用于到移动用户的数据通信和导频信号,则归一化数据速率对应于移动站所请求的数据速率,并忽略在系统范围内的其它用户,改系统类似于图5所示的系统50。换句话说,归一化数据速率是最大可获得的数据速率。随后,在步骤132,将归一化数据速率提供归一化数据速率信道(NDRC)传输至基站。基站接受到来自各个移动站的NDRC,并且确定对应于各个移动用户的数据速率。随后,在步骤134,数据速率指示器传输至各个移动站。处理再转至步骤144,移动接受以数据速率的通信,并最后返回至步骤122。

    B/P比率表示成一个常数,它一般是随着时间非常慢地变换。基站知道了总的广播功率和用于导频信道功率的比率。另一实施例可以实现可用功率的其它指示器,例如,采用传输信号能量、信号的功率谱密度、等等的其它表示方法。

    继续参照图11,在确定数据速率的另一方法中,可以由移动站来产生数据速率的决定。对于该实施例来说,在步骤136,移动站接受通信和导频比率,T/P比。在步骤138,移动站根据用于通信传输的可用功率使用所计算的导频SNR通过调整导频SNR来产生“通信SNR”。在本实施例中,T/P比率用于调整导频SNR。该通信SNR随后影响使用可用功率评估的通信传输的SNR。在步骤140,通信SNR校正数据速率。通信SNR可以校正载波和串扰的比率(C/I)或信道质量的其它指示器。在一个实施例中,列表存储了通信SNR以及相关数据速率。随后,在步骤142,数据速率用于通过数据请求信道(DRC)向基站发出请求,处理便转至步骤144。

    在另一实施例中,移动站使用所接受到的导频信号来评估T/P比率。所接受到的导频信号提供了信道的评估,它可以用于解码通信信息。低通滤波器可以用于对所接受到的导频信号中的噪声分量进行滤波。该滤波提供了对导频信号所接受到的噪声的评估。随后基于滤波结果来评估T/P比率。举一个例子,以下所讨论的系统模式为:

     <mrow> <msup> <msub> <mi>r</mi> <mi>k</mi> </msub> <mo>&prime;</mo> </msup> <mo>=</mo> <msqrt> <mi>T</mi> </msqrt> <msub> <mi>cs</mi> <mi>k</mi> </msub> <mo>+</mo> <msubsup> <mi>n</mi> <mi>k</mi> <mi>t</mi> </msubsup> </mrow>

     <mrow> <msup> <msub> <mi>r</mi> <mi>k</mi> </msub> <mi>p</mi> </msup> <mo>=</mo> <msqrt> <mi>P</mi> </msqrt> <mi>c</mi> <mo>+</mo> <msubsup> <mi>n</mi> <mi>k</mi> <mi>p</mi> </msubsup> </mrow>对于k=0,1,……,M‑1(1)

    式中r’k和rpk分别是在移动站所接受到的通信和导频信号。信道的增益,c是复数。分别指定与通信和导频有关的噪声n’k和rpk。用于导频和通信的集总功率分别指定为P和T。正如所讨论的,T=E’cGi和P=EpcGp,其中E’c和Epc分别表示用于通信和导频信道的各芯片的能量,以及Gi和Gp是所对应的处理增益。值得注意的是,由于不同的代码信道之间的正交性,噪声n’k和npk可以认为是相互无关的,并且可具有零的含义和变量Ni。对于上述所讨论的系统模型而言,通信和导频比率的评估为:

     <mrow> <mi>R</mi> <mo>=</mo> <msqrt> <mfrac> <mi>T</mi> <mi>P</mi> </mfrac> </msqrt> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>

    通信和导频比率的最大几率(ML)的评估可以采用以下公式:

    

    在作了一些近似之后,(3)可以简化成:

    

    其中,可假定各丛都具有单位平均功率。

    对于仿真来说,在(3)和(4)中的评估可以随着数据序列{sk}而不同的,并且数据序列{sk}可表示成在公式所包括的传输信号。然而,这些公式建议是一个充分的统计量,它可以用于T/P比率评估算法的设计。

    根据一个实施例,用于评估T/P比率的算法首先采用 <mrow> <mover> <mi>h</mi> <mo>&OverBar;</mo> </mover> <mo>=</mo> <mfrac> <mn>1</mn> <mi>M</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msubsup> <mi>r</mi> <mi>m</mi> <mi>p</mi> </msubsup> </mrow>来评估 <mrow> <mi>h</mi> <mo>=</mo> <msqrt> <mi>P</mi> </msqrt> <mi>c</mi> <mo>,</mo> </mrow>和来自rpk的噪声变量Ni。接着,算法定义了T/P比率的评估,如:

    

    其中,(5)的评估是渐近公正的。值得注意的是,最佳评估只考虑测试统计的一阶动量,而(5)的评估试图评估二阶动量。在这两种探讨可产生公正评估的同时,二阶动量一般会引入较大的评估变量。也考虑使用一阶动量,所要求的数据序列是无效的,并且移动站使用丛指定格式的现有技术。

    在一个实施例中,T/P比率评估的算法首先采用 <mrow> <mover> <mi>h</mi> <mo>&OverBar;</mo> </mover> <mo>=</mo> <mfrac> <mn>1</mn> <mi>M</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msubsup> <mi>r</mi> <mi>m</mi> <mi>p</mi> </msubsup> </mrow>来评估 <mrow> <mi>h</mi> <mo>=</mo> <msqrt> <mi>P</mi> </msqrt> <mi>c</mi> <mo>,</mo> </mrow>并且获得 <mrow> <msub> <mi>X</mi> <mi>k</mi> </msub> <mo>=</mo> <msup> <msub> <mi>r</mi> <mi>k</mi> </msub> <mo>&prime;</mo> </msup> <mo>/</mo> <mfrac> <mn>1</mn> <mi>M</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msubsup> <mi>r</mi> <mi>m</mi> <mi>p</mi> </msubsup> </mrow>的经验几率密度函数。值得注意的是,对充分大的M来说,x可以认为近似于平均Rsk的高斯分布。因此,就有可能从xk的PDF中获取R的评估。在这时,可以由各种方法从xk的PDF中获取R的评估。一些性能也可以用于从PDF中获取通信和导频比率。例如,对于诸如与高SNR有关的高阶调制来说,xk’就可分成几丛。该丛中心的布局类似于sk丛的布局。对M‑PAM、M‑QAM和M‑PSK来说,丛点是相等分布的。值得注意的是,这类丛的分布也近似于跟随高斯PDF。采用源编码,例如,压缩和/或语音合成,以及信道编码时,所传输的符号是基本相似的。

    算法可以频域或时域的方式进行。对于频域分析来说,丛的点可以相等的间隔来排列,正如xk的PDF丛,并且表明PDF是周期性的。该间隔或该周期可以采用频域的分析方法来确定。例如,提供计算PDF函数的DFT来创建柱状图,随后,该算法就定位了主要的周期。R可以根据主要的周期和任意两个丛点之间的周期来计算。对M‑QAM来说,可以将两维的PDF函数看成两个单独的一维函数。另外,在时域中可以呈现出相等的间隔特性。例如,通过计算PDF的自动校正函数,挨着零偏置的一阶边凸起部的位置就可以提供在两个相邻丛的中心之间的平均周期的评估。

    在还有一个实施例中,首先定位PDF丛的N个中心。该方法假定评估中心{dk}(其中,k=0,1,...,N‑1)和丛点为{ak}(其中,k=0,1,...,N‑1)在相同阶上。最新时序算法的应用产生R的评估:

    

    值得注意的是,可以采用多种方法来确定PDF函数的中心。

    由于丛点是基本相对的,该方法首先丛PDF中找到累加的几率函数(CDF)。可以通过阈值方案的应用来完成对PDF的分丛。随后,通过各组使用一阶动量的平均来计算各组的中心。在另一实施例中,可以应用在图像处理中使用的特征提取技术,例如,根据高斯PDF近似,特征可以是峰值或者是模板。也值得注意的是,图像分割技术,例如,分丛和区域增长,提供了用于经验PDF的点分组的方法。比较(6)和(4)可说明在分丛处理和硬解码之间的相似性,其中,(4)中的实际信号sk由(6)中的硬解码符号am来代替。

    在典型的HDR系统中,例如,图1所示的系统20,每次只在基站之间建立一个连接。在一个实施例中,扩展了无线通信系统,使之能每次支持多个用户。换句话说,图5的系统允许基站52同时向移动单元56、58和60的多个数据用户传输数据。值得注意的是,在图5说明了三个移动单元的同时,在与基站52通信的系统50中可以有任何数量的移动单元。对多个用户的扩展提供了通过分组数据信道54的多个通信。在给定的时间内,由分组数据信道所支持的用户可认为是“工作接收机”。各个工作接收机解码信号信息,来确定分组数据信道54的T/P比率。在不考虑潜在的其它工作接收机的条件下,各个工作接收机处理T/P比率。基站接受来自各个工作接收机请求的数据速率并定位功率的比例。

    再参照图11,在常规的HDR通信系统中,许多信息是事先已知的,它包括但并不限制于,用于传输分组数据的丛的信息,编码的方案,信道的区分,以及可用功率。丛信息认为是调制方案,采用该方案将数字数据信息调制到用于传输的载波上。调制方案包括,但并不限制于,二进制相移键控,正交相移键控(QPSK),正交振幅映射(QAM),等等。译码方案包含将源信息译码成数字形式,包括,但并不限制于,Turbo译码、常规译码、误差译码,例如,循环冗余校验(CRC),比率设置,等等。采用RC的接收机可以请求丛和编码信息。信道区分可以是预定的和固定的。根据已知总的可用传输功率和已知导频信号功率,用于分组数据传输的可用传输功率一般都是已知的。

    在分组数据和低延迟数据的组合系统中,上述所提及的一些信息就不是事先已知的,而是具有变化,因为它共享着适用于低延迟数据(例如,语音通信)的可用功率和可用信道。下列的表格得出了此项比较:

    表1.在HDR系统中的可用信息

       HDR  组合  组合  信息  仅仅分组数据  T/P  信号信道  目的收件人  解码数据包  解码数据包  信息  丛  DRC  DRC  DRC  编码  DRC  DRC  DRC  信道  固定  未知  信息  用于数据的通信  功率  固定  T/P  未知


    信号信道的使用,正如图8所说明的那样,向接收机提供了许多这样的信息。信息识别用于分组数据传输的目的收件人和信道。DCR信息要求数据速率,以确定分丛和编码。提供了可用通信功率指示器,在一个实施例中,该指示器是可用通信功率和导频信号强度的比率,它可提供用于确定数据速率的测量。根据一个实现分离并行信号信道的实施例,通过通信信道和/或DRC来传输与目的收件人、分丛和编码有关的信息,同时通过并行信号信道来传输与数据信道和通信功率有关的信息。

    上文所讨论的实施例应用和实施例的组合允许在无线通信系统中低延迟数据传输的分组数据的组合。正如所指示的那样,语音和分组数据的组合对传输处理引入了变量。分离信号信道的处理在不降低通信质量的条件下提供了对无线通信系统中接收机的信息。信号信道的信息可以识别目的收件人的信息。可用通信指示器对接收机的传输提供了一些有助于接收机确定来自发送机请求的数据速率。类似的,当多个接收机使用通信指示器时,其中,各个指示器计算那里的数据速率,发送器接受有助于设置在传输信道的发送器用于多个接收机的分组数据速率。

    于是,已经披露了用于无线通信系统中的高数据速率发送器的新颖和改进方法。在本文所讨论的举例实施例讨论CDMA系统的同时,各种实施例都可应用于任何无线各个用户的连接方法。为了产生有效的通信,所讨论的举例实施例与HDR有关,但也可以与IS‑95,W‑CDMA,IS‑2000,GSM,TDMA,等等有关。

    业内技术人士都能理解:在上述讨论中所参考的数据、指令、命令、信息、信号、位、符号、以及芯片都可以方便地采用电压、电流、电磁波、电磁场或粒子、光场或例子、或者任何上述组合来表示。

    业内技术人士还能进一步理解:各种说明的逻辑方框、模块、电路以及结合本文披露的实施例所讨论的逻辑步骤都可以采用电子硬件、计算机软件、或者它们的组合来实施。各种所说明的元件、方框、模块、电路、以及步骤都是以它们的功能来讨论的。无论功能是采用硬件还是软件来实现都取决于特殊的应用以及影响整体系统的设计限制。技术人士都会意识:在这样的环境下,硬件和软件的互换性,以及如何更好地对各个特殊的应用实现所讨论的功能。

    例如,结合本文所披露实施例所讨论的各个说明的逻辑方框、模块、电路、以及运算步骤都可以采用数字信号处理器(DSP)、专用集成电路(ASIC)、场可编程门阵列(FPGA)或者其它可编程逻辑器件、分离门或晶体管逻辑、分离硬件元件,例如,寄存器和先进先出(FIFO)类型、执行中间件指令的处理器,任何常规可编程软件模块和处理器,或者设计用于实现上述所讨论功能的上述器件的任意组合。处理器可以优先选用微处理器,但在另一实施例中,处理器可以是常规的处理器、控制器、微处理器、或者其它状态机器。软件模块可以驻留在随机存取存储器(RAM)、FLASH存储器、只读存储器(ROM)、电可编程ROM(EPROM)存储器、电擦除可编程ROM(EEPROM)、寄存器、硬盘、可置换硬盘、紧凑型盘‑ROM(CD‑ROM),以及该领域中已知的任何其它形式存储媒介。处理器可以驻留在ASIC(未显示)中。ASIC可以驻留在电话机(未显示)中。在另一实施例中,处理器驻留在电话机中。处理器可以采用DSP和微处理器的组合,或者采用结合DSP核的两个微处理器,等等方法来实现。

    本文所提供的推荐实施例的讨论使得本领域的任何技术人士都产生或利用本发明。很显然,业内的技术人士也产生这些实施例的各种改进,并且可以在本发明使用没有问题的条件下,将本文所定义的基本原理应用于其它实施例。于是,本发明并不试图限制本文中所显示的实施例,而是使得本发明的所包含的最广泛的范围与本文所讨论的原理和新颖性能相一致。

    

确定高速分组数据无线通信系统中的数据速率的方法和装置.pdf_第1页
第1页 / 共29页
确定高速分组数据无线通信系统中的数据速率的方法和装置.pdf_第2页
第2页 / 共29页
确定高速分组数据无线通信系统中的数据速率的方法和装置.pdf_第3页
第3页 / 共29页
点击查看更多>>
资源描述

《确定高速分组数据无线通信系统中的数据速率的方法和装置.pdf》由会员分享,可在线阅读,更多相关《确定高速分组数据无线通信系统中的数据速率的方法和装置.pdf(29页珍藏版)》请在专利查询网上搜索。

在无线通信系统(50)中实现了分组数据和低延迟数据组合传输的方法。在一个实施例中,并行的信号信道向接收机(56,58,60)提供指示分组数据目的收件人的信息。该信息也可识别用于分组数据传输的传输信道。各个接收机可随后选择性地只解码分组数据,其中信息用于识别接收机作为目的收件人。如果目的收件人是另一移动单元,则打包存储于缓冲器的数据可以忽略。在一个实施例中,信息可与并行信道的分组数据同时发送。在一个。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 电通信技术


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1