一种太阳能房屋采暖供冷系统 【技术领域】
本发明涉及一种利用太阳能给房屋采暖供冷的系统,具体为一种太阳能房屋采暖供冷系统。
背景技术
建筑物的高能耗潜伏着巨大能源危机,而建筑物最大的耗能点就是采暖和供冷。发明一种太阳能房屋具有采暖供冷系统,是当今社会所要急于解决的问题。如本申请人于2005年11月1日申请的申请号为200520066375.4,名称为“一种现浇钢筋砼空心采暖楼板”实用新型专利,它公开了一种现浇钢筋砼空心采暖楼板,包括有楼板,所述楼板由钢筋砼及埋设于所述钢筋砼中的多个空腔构件所组成,所述楼板上面设置有地面装饰层,所述空腔构件中设置有暖气管,所述暖气管的两端外露于所述空腔构件,多个暖气管通过连接管顺次贯通连接而成暖气管组,所述的暖气管组与热源供应系统相连接,空腔构件的内侧壁和地面有隔热层,隔热层上有反射层。其不足之处在于,这种空心采暖楼板因采用的空腔构件中只有暖气管组,只能采暖不能供冷,而且没有散热部分,只能依靠楼板的热辐射采暖,采暖方式单一,效果不是很好;本申请人于2006年3月30日申请的申请号为20061000126.3,名称为“一种太阳能采暖供热房屋”发明专利,它公开一种太阳能采暖供热房屋,其包括有房屋主体、太阳能集热器及保温蓄水箱,太阳能集热器与保温蓄水箱循环连通:房屋主体的地板为现浇钢筋砼空心楼板,其空腔构件内设有采暖管,采暖管连通而组成采暖管组,采暖管组与保温蓄水箱循环连通;保温蓄水箱与采暖管组之间设有循环泵,保温蓄水箱通过第三进水管而接入房屋主体的生活用水管路。通过太阳能集热器加热保温蓄水箱内的冷水,保温蓄水箱内的热水流经采暖管组而对房屋主体的内部空间进行辐射采暖、通过第三进水管流入生活用水管而提供生活用热水。由于采暖管组设于房屋主体的地板内部,使该太阳能采暖供热房屋具有房间可使用空间大、地板承重效果强、工程造价成本低的优点。上述两种方式的结合解决了利用太阳能通过加热水源给房屋的楼板供热和取暖的问题,但未能解决供冷的问题以及供暖的过程中能量损耗较大的现实问题。此外,上述发明也未涉及太阳能的收集、转换、贮藏和除加热水之外的研究应用,更谈不上组成一个采暖供冷系统。
【发明内容】
本发明的目的是提供一种太阳能房屋采暖供冷系统,具有将与建筑所接触的太阳光尽可能充分的转化为建筑可利用能源,使只要有阳光照射的房屋就能做到冬暖夏凉、它具有结构简单,节能环保,制作容易,成本低廉等优良特性,真正实现了太阳能采暖供冷建筑结构一体化。
本发明解决的方法是所述的太阳能房屋采暖供冷系统包括太阳能面砖1、集能装置2、能量转换装置3、流媒体4、供应管道5、空腔楼盖6或空腹墙体7或及其组合8和智能控制系统9。具体步骤是这样来实现的:通过太阳能面砖1采集的太阳能汇聚到集能装置2中,作为原始能源经过能量转化装置3激化成新能源,注入流媒体4,流经特制的供应管道5输送到空腔楼盖6或空腹墙体7或者空腔楼盖6和空腹墙体7组合8的房屋中,对建筑房间形成采暖或供冷,这一完整的过程全部在智能控制系统9的控制下得以实现。
本发明的特征还在于所述的太阳能面砖1由集光面板10、贮能装置11和集光面板10与贮能装置11之间的空腔12构成。太阳光穿透集光面板10加热或激化空腔12中密闭的介质如空气或其它物质,收集这部分能源自动储存在贮能装置11中。
本发明的特征还在于所述的太阳能丽砖1的外侧面或/和内侧面底部设置有至少一层保温隔热层13。所述保温隔热层13既可以保护贮能装置11中的能量不至于容易损失,又可以保护所依赖的基层(如外墙)内的能量不至于容易扩散,兼具外墙外保温的作用。
本发明的特征还在于所述太阳能面砖1的至少一个外表面上设置有至少一个连通装置14,以便将多块太阳能面砖1串联起来,集中收集能量。
本发明的特征还在于所述太阳能面砖1设置有至少一个能量导出装置15,将临时储存在太阳能面砖1的贮能装置11和空腔12介质中的能量导出。当由连通装置14将多块太阳能面砖1串连成一体式,不一定需要每块太阳能面砖1都设置一个能量导出装置15。
本发明的特征还在于所述太阳能面砖1的至少一个外表面上设置有至少一个固定件16,用来将单片太阳能面砖1固定在基层如墙面上,该固定件16也可以用来将单片太阳能面砖1连接成串,再固定到基层上。
本发明的特征还在于所述的太阳能面砖1的外表面至少一个面是凹凸不平的。其底丽凹凸不平时,以便于太阳能面砖1直接粘贴于基层上时增加摩擦力;其侧面凹凸不平时,则便于太阳能面砖1相互之间直接粘贴增加牢固性。
本发明的特征还在于所述的集能装置2包括能量收集管组17、能量贮存器18和能量导出器19。将能量导出装置15导出的能量通过收集管组17集中贮藏到贮存器18里,再按照下一步工序的需求量由能量导出器19导出。
本发明的特征还在于所述的能量转换装置3由能量转换器20和能量输出装置21组成。由能量导出器19导出的能源进入能量转换装置3,由能量转换器20转换成热能或其它形式的能量,经能量输出装置21注入流媒体4以备供暖;或转换成冷能经能量输出装置21注入流媒体4以备供冷。
本发明的特征还在于所述的流媒体4是气态的或液态的。
本发明的特征还在于所述的流媒体4是冷的或热的。冷热是相对于常温而言的。冷的流媒体用来供冷,热的流媒体用来供暖。
本发明的特征还在于所述的供应管道5由芯管22、外管23、连接件24和芯管22与外管23之间的气腔25组成。芯管22是用来供传输冷/热流媒提供冷/热能源的,外管23用来保护芯管22,并和外管23之间形成气腔25,连接件24起到连接芯管22和外管23的作用,气腔25是一个能源集散点。所述气腔25既给工作芯管22的保温节能提供了一个优良的运行环境,也为防止冷/热流媒过冷或过热损伤外管23。
本发明的特征还在于所述的供应管道5由芯管22、毛细管或片26、外管23、连接件24和芯管22与外管23之间的气腔25组成。毛细管或片26设置不同的疏密和大小可以散发不同量的工作芯管1中流媒的冷/热能源,用以调节气腔25内的温度。
本发明的特征还在于所述的供应管道5的芯管22的管径沿着冷/热流媒体4流动的方向是由大到小或者由小到大变化的,其管径的大小变化规律是根据冷/热能量需求量的大小确定的。在传输热流媒过程中,随着分支的增多,芯管22内的压强会逐渐降低,因此由大到小的管径会自动补偿压力的不足;而在传输冷流媒的过程中,则有可能是芯管22的管径由小到大,更便于流媒传输。
本发明的特征还在于所述的供应管道5的芯管22的管径不随冷/热流媒体4的方向而变化,即芯管22的管径保持不变,这样的供冷/热流媒管道更便于生产和安装。
本发明的特征还在于所述的供应管道5,其特征在于所述的芯管22与外管23之间的气腔25的横截面积是可变的。可变截面的气腔25形成了新的能源采集区,便于分户、分房间的室内供冷/热。
本发明的特征还在于所述的供应管道5的芯管22与外管23之间的气腔25是沿冷/热流媒流动的方向分段独立设置或串联设置的。
本发明的特征还在于所述的供应管道5的芯管22与外管23之间的气腔25中设置有至少一个增压装置27。通过在气腔25中设置至少一个增压装置27,就可以控制和调节气腔25中气流的速度,从而也就控制和调节气腔中的气流扩散和辐射的温度和速度,起到补充和调节由于管道传输距离过远引起的温度变化和能源损失。这样就比较容易解决房间与房间之间的能源传递与控制问题。
本发明的特征还在于所述的毛细管或片26的疏密度沿着冷/热流媒体4流动的方向是由大到小或者由小到大变化的。毛细管或片26设置不同的疏密和大小可以散发不同量的芯管22中流媒的冷/热能源,用以调节气腔25内的温度。它的疏密程度和大小尺寸应根据需用冷/热量来确定,并与传输距离的远近、压力大小相关联。它的疏密程度和大小尺寸决定和影响气腔25的平均截面变量,从而在外管23截面不变时也能成为一种变截面的供冷/热管道。
本发明的特征还在于所述的空腔楼盖6由主梁28、次梁29和/或密肋梁30和空腔构件31组成。在主梁28围合的楼板中设置单向的或双向交叉次梁29,在次梁间设置空腔构件31;或者是在主梁28围合的楼板中设置单向的或者双向交叉次梁29,在次梁间设置单向或者双向交叉的密肋梁30,再在密肋梁30之间设置空腔构件31;或者是在主梁28围合的楼板中设置单向的或者双向交叉的密肋梁30,再在密肋梁30之间设置空腔构件31,构成不同形式的空腔楼盖6。
本发明的特征还在于所述的空腔楼盖6的主梁28、次梁29或密肋梁30至少有一条梁是现浇钢筋混凝土或者现浇型钢混凝土或者由型钢焊接而成的。本发明的应用不受结构类型的限制。
本发明的特征还在于所述的空腔楼盖6的主梁28、次梁29或密肋梁30至少有一条梁是空腹的。空腹的主梁、次梁或者密肋梁都能减少材料的用量,减轻楼盖的自重,并且使楼盖具有更好的保温隔热性能。
本发明的特征还在于所述的空腔构件31位于楼板的上部、中部、下部或者贯穿楼板的上下表面。当空腔构件31位于楼板的上部时,其下部需现浇混凝土甚至还需要添加钢筋、钢丝网等加劲物;当空腔构件31位于楼板的下部时,其上部需现浇混凝土甚至还需要添加钢筋、钢丝网等加劲物;当空腔构件31位于楼板的中部时,其上、下部均需现浇混凝土甚至还需要添加钢筋、钢丝网等加劲物;当空腔构件31贯穿楼板的上下表面时,其上、下部均不须现浇混凝土,也不需要添加其他加劲物。不同的方式,都能实现空腔楼盖的目的,各有优缺点。
本发明的特征还在于所述的空腹墙体7包括纵向或横向或纵横双向同时设置的加劲肋32和空腔构件31。
本发明的特征还在于所述的空腔构件31位于墙体的内侧、外侧、腹部或贯穿于墙体的内外侧面。空腔构件31位于墙体的内侧时,其外侧需要封一层墙面板;空腔构件31位于墙体的外侧时,其内侧需要封一层墙面板;空腔构件31位于墙体的腹部时,其内侧、外侧均需要加设墙面板;空腔构件31贯穿于墙体的内外侧面时,其内外侧面均不须再加设墙面板。
本发明的特征还在于所述的空腔构件31由上面板33、下面板34及周围侧板35组成。空腔构件31用于墙体时,其上面板33和下面板34分别位于墙体的内表面一侧和外表面一侧,周围侧板35位于墙体内部,和其它空腔构件31的周围侧板35相连或者和加劲肋32相连。
本发明的特征还在于所述的空腔构件31由上面板33、下面板34及上下板面之间的至少一层隔板36及周围侧板35围合成的至少两个腔室的空心腔体。对于高度较高的空腔构件31,在其上下面板之间加设至少一层隔板36,可以增加周围侧板35的刚度,从而也就增加了空腔构件31的刚度和强度。此外,上下板面之间加设至少一层隔板后,它和上下面板、周围侧板围合成的至少两个腔室的空心腔体,更有利于在同一个空腔中或者同一层楼盖/一块墙体中分开供冷和供暖。例如,只有一层隔板36的空腔构件31就有上下两个腔室,上腔室用来供暖,下腔室用来供冷。
本发明的特征还在于所述的空腔构件31的至少一个外表面或至少一个内表面设置有至少一层保温隔热层37。无论是在外表面还是在内表面设置保温隔热层37,几个面设保温隔热层,每一个面设几层保温隔热层都是视功能需要而定。
本发明的特征还在于所述的空腔楼盖6或空腹墙体7的外表面至少有一侧设置有毛细孔或管38。在面对有需要采暖/供冷的房间的空腔构件的一侧面板上设置有毛细孔或管38,更便于空腔内外能量的辐射或交换。
本发明的特征还在于所述的智能控制系统9出连接在太阳能面砖1、集能装置2、能量转换装置3、流媒体4、供成管道5和空腔楼盖6或空腹墙体7或及其组合8中的传感器39及计算机控制系统40组成。太阳能面砖1收集的能量、集能装置2、能量转换装置3、流媒体4、供应管道5、空腔楼盖6或空腹墙体7或及其组合8的工作过程、工作效率、量变、调配、故障报警、自我诊断及修复等等都集中在智能控制系统9的监控中。
本发明适用于所有工业与民用建筑,经济适用,节能环保,直接提升建筑品质,改善生活质量。
【附图说明】
图1为所述太阳能房屋采暖供冷系统轴测示意图;
图2为所述太阳能面砖的构造图;
其中,图2a为所述太阳能面砖的轴测及剖切示意图;图2b为所述太阳能面砖设置有内保温层的剖切示意图;图2c为所述太阳能面砖设置有外保温层的剖切示意图;
图3为所述集能装置的原理图;
图4为所述能量转换装置的原理图;
图5为所述供应管道的构造示意图;
其中,图5a为所述供应管道的轴测图;图5b为所述供应管道外管为方形时的剖切图;图5c为所述供应管道外管为圆形时的剖切图;
图6为所述供应管道的另一种构造示意图;
其中,图6a为所述供应管道的轴测图;图6b为所述供应管道外管为方形时的剖切图;图6c为所述供应管道外管为圆形时的剖切图;
图7为所述供应管道芯管管径变化的轴测示意图;
图8为所述气腔分段独立设置的示意图;
图9为所述气腔串联设置的示意图;
图10为所述气腔中设置有增压装置的示意图;
图11为所述气腔中的毛细管或片26的疏密度、大小是变化的的示意图;
图12为所述空腔楼盖结构示意图;
图13为所述空腔楼盖中密肋梁、次梁、主梁为空腹时的结构示意图;
图14为所述空腔构件在空腔楼盖中不同部位设置时的结构示意图;
其中,图14a空腔构件位于楼盖的上部;图14b空腔构件位于楼盖的中部;图14c空腔构件位于楼盖的下部;图14d空腔构件贯穿楼盖的上部、中部和下部;
图15为所述有横向加劲肋的空腹墙体立面示意图;
图16为所述有纵向加劲肋的空腹墙体立面示意图;
图17为所述有纵横双向加劲肋的空腹墙体立面示意图;
图18为所述空腔构件在空腹墙体中不同部位设置时的结构示意图;
其中,图18a空腔构件位于墙体的外侧;图18b空腔构件位于墙体的内侧;图18c空腔构件位于墙体的腹部;图18d空腔构件贯穿墙体的内侧、腹部和外侧;
图19为所述空腔构件的构造示意图;
图20为所述空腔构件有一层隔板的构造示意图;
图21为所述空腔构件有二层隔板的构造示意图;
图22为所述空腔构件上板内表面设置有保温层的构造示意图;
图23为所述空腔构件隔板的上下板表面及四周侧壁设置有保温层的构造示意图;
图24为所述空腔楼盖有毛细孔的构造示意图;
其中:图24a为一侧设置有毛细孔的构造示意图;图24b为双侧设置有毛细孔的构造示意图;
图25为所述空腹墙体有毛细孔的构造示意图;
其中:图25a为一侧设置有毛细孔的构造示意图;图25b为双侧设置有毛细孔的构造示意图;
图26为所述智能控制系统的原理示意图。
【具体实施方式】
下面结合附图对本发明进一步说明。附图中,1为太阳能面砖,2为集能装置,3为能量装换装置,4为流媒体,5为供应管道,6为空腔楼盖,7为空腹墙体,8为空腔楼盖和空腹墙体的组合,9为智能控制系统,10为集光面板,11为贮能装置,12为空腔,13为保温隔热层,14为连通装置,15为能量导出装置,16为固定件,17为能量收集管组,18为能量贮存器,19为能量导出器,20能量转换器,21为能量输出装置,22为芯管,23为外管,24为连接件,25为气腔,26为毛细管或片,27为增压装置,28为主梁,29为次梁,30为密肋梁,31为空腔构件,33为空腔构件的上面板,34为下面板,35为周围侧板,36为隔板,37为保温隔热层,38为毛细孔或管,39为传感器,40为计算机控制系统。
图1为所述太阳能房屋采暖供冷系统轴测示意图。该系统包括太阳能面砖1、集能装置2、能量转换装置3、流媒体4(囿于图幅的比例限制,图1中没有标注流媒体4)、供应管道5、空腔楼盖6或空腹墙体7或及其组合8和智能控制系统9。具体步骤是这样来实现的:通过太阳能面砖1采集的太阳能汇聚到集能装置2中,作为原始能源经过能量转化装置3激化成新能源,注入流媒体4,流经特制的供应管道5输送到空腔楼盖6或空腹墙体7或者空腔楼盖6和空腹墙体7组合8的房屋中,对建筑房间形成采暖或供冷,这一完整的过程全部在智能控制系统9的控制下得以实现。
图2为所述太阳能面砖的构造图。如图2a所示,所述的太阳能面砖1由集光面板10、贮能装置11和集光面板10与贮能装置11之间的空腔12构成。太阳光穿透集光面板10加热或激化空腔12中密闭的介质如空气或其它物质,收集这部分能源自动储存在贮能装置11中。
图2b为所述太阳能面砖设置有内保温层的剖切示意图;图2c为所述太阳能面砖设置有外保温层的剖切示意图;
图3为所述集能装置的原理图。所述的集能装置2包括能量收集管组17、能量贮存器18和能量导出器19。将能量导出装置15导出的能量通过收集管组17集中贮藏到贮存器18里,再按照下一步工序的需求量由能量导出器19导出。。
图4为所述能量转换装置的原理图;所述的能量转换装置3由能量转换器20和能量输出装置21组成。由能量导出器19导出的能源进入能量转换装置3,由能量转换器20转换成热能或其它形式的能量,经能量输出装置21注入流媒体4以备供暖;或转换成冷能经能量输出装置21注入流媒体4以备供冷。
图5为所述供应管道的构造示意图,其中,图5a为所述供应管道的轴测图。所述的供应管道5由芯管22、外管23、连接件24和芯管22与外管23之间的气腔25组成。芯管22是用来供传输冷/热流媒提供冷/热能源的,外管23用来保护芯管22,并和外管23之间形成气腔25,连接件24起到连接芯管22和外管23的作用,气腔25是一个能源集散点。所述气腔25既给工作芯管22的保温节能提供了一个优良的运行环境,也为防止冷/热流媒过冷或过热损伤外管23。图5b为所述供应管道外管为方形时的剖切图;图5c为所述供应管道外管为圆形时的剖切图。外管为方形时多用于室内或室外明装的管道,外管为圆形时多用于室内暗装的管道。
图6为所述供应管道的另一种构造示意图。如图6a所示,所述的供应管道5由芯管22、毛细管或片26、外管23、连接件24和芯管22与外管23之间的气腔25组成。毛细管或片26设置不同的疏密和大小可以散发不同量的工作芯管1中流媒的冷/热能源,用以调节气腔25内的温度。;图6b为所述供应管道外管为方形时的剖切图,图6c为所述供应管道外管为圆形时的剖切图的两种不同情形。
如图7所示,所述的供应管道5的芯管22的管径沿着冷/热流媒体4流动的方向是由大到小或者由小到大变化的,其管径的大小变化规律是根据冷/热能量需求量的大小确定的。
图8为所述气腔分段独立设置的示意图,图9为所述气腔串联设置的示意图。分段独立设置还是串联设置视建筑物采暖或供冷的需要而定。
图10为所述气腔中设置有增压装置的示意图。通过在气腔25中设置至少一个增压装置27,就可以控制和调节气腔25中气流的速度,从而也就控制和调节气腔中的气流扩散和辐射的温度和速度,起到补充和调节由于管道传输距离过远引起的温度变化和能源损失。
图11为所述气腔中的毛细管或片26的疏密度、大小是变化的的示意图。毛细管或片26设置不同的疏密和大小可以散发不同量的芯管22中流媒的冷/热能源,用以调节气腔25内的温度。它的疏密程度和大小尺寸应根据需用冷/热量来确定,并与传输距离的远近、压力大小相关联。
图12为所述空腔楼盖结构示意图;所述的空腔楼盖6由主梁28、次梁29、密肋梁30和空腔构件31组成。在主梁28围合的楼板中设置双向交叉次梁29,在次梁间设置双向交叉的密肋梁30,再在密肋梁30之间设置空腔构件31。
图13为所述空腔楼盖中密肋梁、次梁、主梁为空腹时的结构示意图。图中只示意了一个方向的主梁28、次梁29、密肋梁30为空腹是的情形,另外一个方向则可以是空腹的,也可以不是空腹的。
图14为所述空腔构件在空腔楼盖中不同部位设置时的结构示意图。其中,图14a空腔构件位于楼盖的上部;图14b空腔构件位于楼盖的中部;图14c空腔构件位于楼盖的下部;图14d空腔构件贯穿楼盖的上部、中部和下部;当空腔构件31位于楼板的上部时,其下部需现浇混凝土甚至还需要添加钢筋、钢丝网等加劲物;当空腔构件31位于楼板的下部时,其上部需现浇混凝土甚至还需要添加钢筋、钢丝网等加劲物;当空腔构件31位于楼板的中部时,其上、下部均需现浇混凝土甚至还需要添加钢筋、钢丝网等加劲物;当空腔构件31贯穿楼板的上下表面时,其上、下部均不须现浇混凝土,也不需要添加其他加劲物。不同的方式,都能实现空腔楼盖的目的,各有优缺点。
图15、图16和图17分别为所述有横向、纵向和纵横双向加劲肋32的空腹墙体立面示意图。
图18为所述空腔构件在空腹墙体中不同部位设置时的结构示意图。其中,图18a空腔构件位于墙体的外侧;图18b空腔构件位于墙体的内侧;图18c空腔构件位于墙体的腹部;图18d空腔构件贯穿墙体的内侧、腹部和外侧。所述的空腔构件31位于墙体的内侧、外侧、腹部或贯穿于墙体的内外侧面。空腔构件31位于墙体的内侧时,其外侧需要封一层墙面板;空腔构件31位于墙体的外侧时,其内侧需要封一层墙面板;空腔构件31位于墙体的腹部时,其内侧、外侧均需要加设墙面板;空腔构件31贯穿于墙体的内外侧面时,其内外侧面均不须再加设墙面板。
图19为所述空腔构件的构造示意图。所述的空腔构件31由上面板33、下面板34及周围侧板35组成。空腔构件31用于墙体时,其上面板33和下面板34分别位于墙体的内表面一侧和外表面一侧,周围侧板35位于墙体内部,和其它空腔构件31的周围侧板35相连或者和加劲肋32相连。
图20为所述空腔构件有一层隔板36的构造示意图。隔板36将由上面板33、下面板34和周围侧板35为合成的空腔分割成两个空腔,满足不同功能需求使用。
如图21为所示的空腔构件有二层隔板。二层隔板36将由上面板33、下面板34和周围侧板35为合成的空腔分割成三个空腔,满足不同功能需求使用。例如,上层空腔拿来供暖,下层拿来供冷,中间层用来隔热。
图22为所述空腔构件上板内表面设置有保温层37的构造示意图。这种空腔构件可以用在屋面中,加强屋面板的保温隔热性能。
图23为所述空腔构件隔板的上下板表面及四周侧壁设置有保温层37的构造示意图。这种空腔构件尤其适合用在具有采暖供冷双制式的楼板中,加强楼面板的保温隔热性能,提高了能量的使用效率。
图24为所述空腔楼盖有毛细孔38的构造示意图。其中:图24a为一侧设置有毛细孔38的构造示意图;这类楼板适合于仅有单向供热或供冷的楼板,如在地板中向上一侧设置毛细孔,在屋面板中则仅需在向下一侧设置毛细孔38;图24b为双侧设置有毛细孔38的构造示意图,这类楼板适合各类中间楼层有采暖供冷要求的楼板。
图25为所述空腹墙体有毛细孔38的构造示意图。如图25a为一侧设置有毛细孔38的构造示意图,它适合于墙体单侧需要采暖或供冷的房屋腔体;图25b为双侧设置有毛细孔38的构造示意图,它适合于墙体两侧需要采暖或供冷的房屋腔体。
图26为所述智能控制系统的原理示意图。所述的智能控制系统9由连接在太阳能面砖1、集能装置2、能量转换装置3、流媒体4、供应管道5和空腔楼盖6或空腹墙体7或及其组合8中的传感器39及计算机控制系统40组成。太阳能面砖1收集的能量、集能装置2、能量转换装置3、流媒体4、供应管道5、空腔楼盖6或空腹墙体7或及其组合8的工作过程、工作效率、量变、调配、故障报警、自我诊断及修复等等都集中在智能控制系统9的监控中。