外加电源提供电场效应的薄膜光伏电池 【技术领域】
本发明涉及一种光伏电池,具体涉及一种外加电源提供电场效应的薄膜光伏电池。
背景技术
当前薄膜光伏电池的体系包括:硅基、铜铟镓硒(CIGS)、碲化镉(CdTe)以及掺杂聚合物材料的光伏电池。这些光伏电池的基本结构,都是采用p型半导体层、n型半导体层所组成具有pn叠层特征,以及非晶p-i-n叠层特征的薄膜光伏电池,参看附图1-A、附图1-B、附图1-C所示。
图1-A:铜铟镓硒(CIGS)薄膜光伏电池是由:透明导电膜1.1、硫化镉(CdS)1.2、铜铟镓硒(CIGS)1.3、背面电极层1.4、基板1.5所组成。其中透明导电膜1.1采用氧化锌(ZnO)及氧化铟锡(ITO),背面电极层1.4采用钼(Mo),基板1.5采用玻璃、塑料或金属材料。
图1-B:碲化镉(CdTe)薄膜光伏电池是由:透明导电膜2.1、硫化镉(CdS)2.2、碲化镉(CdTe)2.3、背面电极层2.4、基板2.5所组成。其中透明导电膜2.1采用氧化铟锡(ITO)及二氧化锡(SnO2),背面电极层2.4采用碲化锌(ZnTe)或铜(Cu),基板2.5采用玻璃。
图1-C:非晶硅薄膜光伏电池是由:透明导电膜3.1、p-i-n叠层结构3.2、背面电极层3.3、基板3.4所组成。其中透明导电膜3.1采用氧化铟锡(ITO)及二氧化锡(SnO2),p-i-n叠层结构3.2采用非晶硅及微晶硅形成的a-Si/μc-Si叠层或是堆栈三层形成的a-Si/a-SiGe/a-SiGe,基板3.4采用玻璃。
附图1-A、附图1-B、附图1-C中Enp是薄膜光伏电池内pn结与非晶硅薄膜光伏电池p-i-n结构自建电场,Ip是光伏电池输出电流。
n型半导体是在本征半导体材料中,掺入杂质使自由电子浓度大大增加,称为n型(电子型)半导体。p型半导体在本征半导体中,掺入杂质使空穴浓度大大增加,称为p型(空穴型)半导体。
薄膜光伏电池的n型半导体与p型半导体的接触面形成pn结,并在耗尽区载流子扩散形成自建电场Enp。非晶光伏电池的p型半导体膜层与n型半导体膜层之间加有i本征半导体,形成p-i-n结构,并在p-n膜层之间内自建电场Enp,Enp电场方向从n区指向p区。
当入射光子进入薄膜光伏电池pn结耗尽区或非晶光伏电池的i本征半导体区,并光子能量大于pn结耗尽区或i本征半导体区能隙时,光子能量会被吸收,产生高势能的电子和空穴对。电子和空穴对会分别受到自建电场Enp的影响,通过负载R而产生光电流Ip。
薄膜光伏电池的基本结构中,pn结区载流子扩散自建电场与p-i-n结构自建电场Enp的大小与稳定,是光伏电池发电效率的重要参数。
薄膜光伏电池内自建电场Enp是电池本身半导体材料及电池结构的特征参数。所以,影响薄膜光伏电池自建电场Enp的强弱与稳定,主要有以下三个主要方面影响:
1、晶粒间界处存在势垒,阻断载流子的通过。
2、晶粒间界作为一种晶体缺陷,起着有效复合正负载流子对中心作用。
3、在形成pn结的工艺过程中,掺杂的原子会沿着晶粒间界向下择优扩散,形成导电分流路径,增大漏电流。
而非晶硅薄膜光伏电池是p-i-n结构,非晶硅薄膜光伏电池内光生载流子主要产生于未掺杂的i本征吸收层,与化合物半导体薄膜光伏能电池中载流子主要由pn结扩散区移动不同,在非晶硅薄膜光伏电池中,光生载流子主要依靠电池内n层-p层之间电场Enp作用做漂移运动,使光生载流子产生后立即被吸引到n侧和p侧。但是非晶硅p区与n区膜材料中,还包含有大量的悬挂键、空位等缺陷,因而其有很高的缺陷态密度,它们提供了电子和空穴复合的场所。另外由于非晶硅电池在经过长时间光照后,其光电导和暗电导都显著减小,这一现象被称为Staebler-Wronski效应,简称S-W效应。由于S-W效应使非晶硅膜中缺陷态密度增加,导致电池内的光生电子和空穴复合几率增加,电池的转换效率下降。
【发明内容】
为了提高薄膜光伏电池转换效率,本发明提供一种外加电源提供电场效应的薄膜光伏电池,是一种由外加电源提供给薄膜光伏电池,形成电场效应的薄膜光伏电池结构,促成一个增强与稳定电池内自建电场Enp,提高薄膜光伏电池的开路电压与最大输出功率pmax,形成转换效率较高的电场效应薄膜光伏电池结构。
本发明是在中国200910182141.9号发明专利申请:“外加电场型光伏电池”的基础上,通过外部电源为薄膜光伏电池体系中非晶硅基、化合物半导体铜铟镓硒(CIGS)、碲化镉(CdTe)以及掺杂聚合物材料的光伏电池,提供一个调控电池内电场,该电场效应可以增强薄膜光伏电池pn结区载流子扩散自建电场,提高光伏电池的最大输出功率Pmax,形成附加电场效应功能的薄膜光伏电池。
实现本发明目的技术方案是:一种外加电源提供电场效应的薄膜光伏电池,所述的薄膜光伏电池包括:硅基薄膜光伏电池、铜铟镓硒薄膜光伏电池(CuIn1-XGaXSe2,简写为CIGS)、碲化镉薄膜光伏电池(CdTe)以及掺杂聚合物材料的薄膜光伏电池,该薄膜光伏电池设有透明导电膜及背面电极层,所述的透明导电膜与背面电极层为薄膜光伏电池的输出电极(电源输出回路电极);其特征在于,在所述的背面电极层下面设有电场底层电极,该电场底层电极与薄膜光伏电池本体中背面电极层之间设有绝缘层,该绝缘层形成电场表层电极、薄膜光伏电池本体中背面电极与电场底层电极电隔离;在电场底层电极与所述透明导电膜构成的电场表层电极之间设有外加电压源V1,而透明导电膜作为电场表层电极与电场底层电极是构成绝缘电场效应的输入电极。
该薄膜光伏电池本体上面的透明导电膜同时作为薄膜光伏电池的输出电极,也作为外加电场的表层电极。
该外加电压源V1的正极相对应电场效应薄膜光伏电池的n型半导体,负极相对应电场效应薄膜光伏电池的p型半导体的电场效应电极连接。即,该外加电压源V1的正极,接所述电场效应的铜铟镓硒薄膜光伏电池(CIGS)、碲化镉薄膜光伏电池(CdTe)电场表层电极(透明导电膜),该外加电压源的负极,接所述的铜铟镓硒薄膜光伏电池(CIGS)、碲化镉薄膜光伏电池(CdTe)电场底层电极;该外加电压源V1的正极,接所述电场效应的非晶硅薄膜光伏电池的电场底层电极,该外加电压源的负极,接所述电场效应的非晶硅薄膜光伏电池的透明导电膜构成的电场表层电极。
本发明通过外部电源V1接入电场效应薄膜光伏电池,当单组光伏电池输出开路电压为VOC,外加电源V1的电压范围为V1≥VOC;现有的单组(非电场型)薄膜光伏电池标准输出开路电压VOC,化合物半导体薄膜光伏电池在0.6V≤VOC≤1.0V,非晶硅叠层薄膜光伏电池在0.8V≤VOC≤1.4V;其中电源电压V1的大小与电场底层电极与背面电极层之间的绝缘层厚度有关,厚度越大,电压越高,一般绝缘层总厚度要求在10微米以下。
其电场效应薄膜光伏电池特征是,电场效应薄膜光伏电池中化合物半导体薄膜光伏电池的透明导电膜与电场底层电极,分别连接直流电源V1地正极与负极,并形成电场E1,电场E1方向与自建电场Enp相同。电场效应薄膜光伏电池中非晶硅薄膜光伏电池的透明导电膜与电场底层电极,分别连接直流电源V1的负极与正极,电场底层电极与透明导电膜之间p-i-n叠层结构形成电场E1,电场E1方向与自建电场Enp相同。
在电场效应薄膜光伏电池结构中,由于电场E1方向与光伏电池的pn结区电场Enp方向一致,Enp加强与稳定,增强正负载流子的分离度,减少了正负载流子的复合作用。电场E1+Enp同时降低了pn结反向饱和电流,能够提高电池的开路电压VOC。
另外,电场E1对p区少子-电子有阻挡和反射作用,既减少了背表面之复合作用,同时电场E1能调整多晶体晶粒间界势垒方向,提高载流子迁移,降低晶粒间界复合正负载流子,又提高了pn结对光生少子的收集几率。所以也就能提高光伏电池的短路电流与开路电压,提高光伏电池最大输出功率Pmax。
Pmax=FF×VOCISC
FF为光伏电池的填充因子。
本发明的优化方案有:
所述外加电场的电源装置的结构是:参照附图5,采用小功率的薄膜光伏电池1与薄膜光伏电池2串联形成电场电源,该独立的电场电源正、负电极分别相应的连接到,电场效应薄膜光伏电池3透明导电膜的电场表层电极与电场底层电极。参照附图2、3、4,电场电源V1也可以是与电场效应薄膜光伏电池相隔离的外接电压源。
本发明通过外部电源接入电场效应薄膜光伏电池的电场表层电极与底层电极,形成一个增强与稳定电池内自建电场Enp电场,提高光伏电池的开路电压与最大输出功率Pmax,形成转换效率较高的电场效应薄膜光伏电池。
本发明通过外部电源接入电场效应薄膜光伏电池,而外部电源所形成的外部电场在E1=2Enp时,电场效应薄膜光伏电池电压-电流曲线及转化功率Pmax,参看附图6所示。
【附图说明】
图1-A为现有化合物半导体CIGS薄膜光伏电池结构原理图;
图1-B为现有化合物半导体CdTe薄膜光伏电池结构原理图;
图1-C为现有非晶硅叠层薄膜光伏电池结构原理图;
图2为本发明电场效应CIGS薄膜光伏电池结构原理图;
图3为本发明电场效应CdTe薄膜光伏电池结构原理图;
图4为本发明电场效应非晶硅叠层光伏电池结构原理图;
图5-A、图5-B分别为本发明薄膜光伏电场电源与电场效应薄膜光伏电池连接图;图5-C是非晶硅电场效应薄膜光伏电池外接电场电源原理图;
图6为电场效应薄膜光伏电池与薄膜光伏电池电压-电流对比曲线图。
【具体实施方式】
实施例1,参照附图2所示,化合物半导体CIGS电场效应薄膜光伏电池结构是由:透明导电膜1.1-1、CdS层1.2-2、CIGS层1.3-3、背面电极1.4-4、基板1.5-5、绝缘膜1.6-6、电场底层电极1.7-7、电场电源V11.8-8、负载电阻R所组成。电场效应薄膜光伏电池结构中,透明导电膜1.1-1与背面电极1.4-4是光伏电池输出的负电极与正电极,而透明导电膜1.1-1与电场底层电极1.7-7连接电场电源V1的正极与负极,使透明导电膜1.1-1与电场底层电极1.7-7之间形成电场E1。其中电场底层电极1.7-7是通过绝缘膜1.6-6与背面电极1.4-4进行电隔离。而电场电源V1与电场效应薄膜光伏电池也是相互独立的电源。
实施例2
参照附图3所示,化合物半导体CdTe电场效应薄膜光伏电池结构是由:透明导电膜2.1-1、CdS层2.2-2、CdTe层2.3-3、背面电极2.4-4、基板2.5-5、绝缘膜2.6-6、电场底层电极2.7-7、电场电源V12.8-8、负载电阻R所组成。电场效应薄膜光伏电池结构中,透明导电膜2.1-1与背面电极2.4-4是光伏电池输出的负电极与正电极,而透明导电膜2.1-1与电场底层电极2.7-7连接电场电源V1的正极与负极,使透明导电膜2.1-1与电场底层电极2.7-7之间形成电场E1。其中电场底层电极2.7-7是通过绝缘膜2.6-6与背面电极2.4-4进行电隔离。而电场电源V1与电场效应薄膜光伏电池也是相互独立的电源。
实施例3
参照附图4所示,电场效应非晶硅薄膜光伏电池结构是由:透明导电膜3.1-1、p-i-n叠层结构3.2-2、背面电极3.3-3、基板3.4-4、绝缘层3.5-5、电场底层电极3.6-6、电场电源V13.7-7、负载电阻R所组成。其中电场电源V1的正、负极连接电场底层电极3.6-6与透明导电膜3.1-1,并在p-i-n叠层结构3.2-2内部形成电场E1,电场E1与自建电场Enp方向相同。而且电场底层电极3.6-6与非晶光伏电池背面电极3.3-3电隔离。
实施例4
参照附图5-A、附图5-B所示,电场效应薄膜光伏电池中电场电源V1与电场效应薄膜光伏电池是相互独立的电源。本实施例使用独立的薄膜光伏电池作为电场电源V1。图5-A是(CIGS)电场效应薄膜光伏电池外接电场电源原理图。小功率的薄膜光伏电池1与薄膜光伏电池2串联形成电场电源,电场电源正负电极分别连接电场效应薄膜光伏电池3的透明导电膜电场表层电极与电场底层电极。应为电场电源输出电流很小,薄膜光伏电池1与薄膜光伏电池2串联形成电场电源开路电压E1=2VOC,开路电压2VOC=1.2V-2.0V。
图5-B是(CdTe)电场效应薄膜光伏电池外接电场电源原理图。小功率的薄膜光伏电池1与薄膜光伏电池2串联形成电场电源,电场电源正负电极分别连接电场效应薄膜光伏电池3的透明导电膜电场表层电极与电场底层电极。应为电场电源输出电流很小,薄膜光伏电池1与薄膜光伏电池2串联形成电场电源开路电压E1=2VOC,开路电压2VOC=1.2V-2.0V。
图5-C是非晶硅电场效应薄膜光伏电池外接电场电源原理图。小功率的薄膜光伏电池1与薄膜光伏电池2串联形成电场电源,电场电源负、正电极分别连接电场效应薄膜光伏电池3的透明导电膜电场表层电极与电场底层电极。应为电场电源输出电流很小,薄膜光伏电池1与薄膜光伏电池2串联形成电场电源开路电压E1=2VOC,开路电压2VOC=1.6V-2.8V。