天线以及装配有所述天线的设备.pdf

上传人:e1 文档编号:1101827 上传时间:2018-03-31 格式:PDF 页数:28 大小:831.74KB
返回 下载 相关 举报
摘要
申请专利号:

CN201010116643.4

申请日:

2010.02.09

公开号:

CN101814648A

公开日:

2010.08.25

当前法律状态:

终止

有效性:

无权

法律详情:

未缴年费专利权终止IPC(主分类):H01Q 1/12申请日:20100209授权公告日:20130515终止日期:20150209|||授权|||实质审查的生效IPC(主分类):H01Q 1/12申请日:20100209|||公开

IPC分类号:

H01Q1/12; H01Q1/24; H01Q9/16

主分类号:

H01Q1/12

申请人:

富士通株式会社; 富士通先端科技株式会社

发明人:

古谷长久; 甲斐学; 野上悟

地址:

日本神奈川县川崎市

优先权:

2009.02.24 JP 2009-041470

专利代理机构:

隆天国际知识产权代理有限公司 72003

代理人:

张浴月;张志杰

PDF下载: PDF下载
内容摘要

一种天线,包括:电介质基板,设置在电介质基板第一表面上的第一接地电极,设置在所述电介质基板第二表面上的第一天线元件和第二天线元件,所述第一天线元件和第二天线元件具有相同的谐振频率和相同的品质因数,连接第一天线元件和第二天线元件的传输线,以及设置在所述传输线中的馈电部。本发明还提供装配有所述天线的设备。

权利要求书

1.  一种天线,包括:
电介质基板;
设置在所述电介质基板第一表面上的接地电极;
设置在所述电介质基板第二表面上的第一天线元件和第二天线元件,所述第一天线元件和第二天线元件具有相同的谐振频率和相同的品质因数;
连接所述第一天线元件和第二天线元件的传输线;以及
设置在所述传输线中的馈电部。

2.
  一种电子设备,包括:
电介质基板;
设置在所述电介质基板第一表面上的接地电极;
设置在所述电介质基板第二表面上的第一天线元件和第二天线元件,所述第一天线元件和第二天线元件具有相同的谐振频率和相同的品质因数;
连接所述第一天线元件和第二天线元件的传输线;
设置在所述传输线中的馈电部;以及
设置在所述电介质基板上并连接至所述馈电部的电路芯片。

说明书

天线以及装配有所述天线的设备
技术领域
本发明涉及一种天线及装配有所述天线的电子设备。
背景技术
近年来,RFID(Radio Frequency Identification)系统已经应用于库存管理、商品管理以及分销管理中。典型的RFID系统构造如下。主计算机和读/写器连接。具有内置天线的存储器,被称作标签,贴在被管理的对象上。各种涉及到被管理对象的信息存储在标签中。被管理对象的信息通过读/写器在标签和主计算机之间传输。标签中被管理对象的信息读取到主计算机上,并且主计算机中被管理对象的信息写入到标签中。这样,被管理对象的信息实现了被管理对象的可追踪性。
优选地,RFID系统中采用的天线具有宽带特性、小型化的尺寸和薄的外形。也优选地,天线的性能不受天线所连接部件属性的影响。
为了实现上述天线,存在有各种各样的提议方案。例如,一种被提议的天线具有形成在电介质基板上并具有不同谐振频率的多个平面天线元件,其中,所述的多个平面天线元件通过用于阻抗匹配的传输线耦合在一个馈电点(见日本专利特许公开号2006-287452)。另一种被提议的天线用作金属表面附近的缝隙天线,以及用作远离金属表面的普通天线(见美国专利号6914562)。
发明内容
本发明的一个目的是提供一种天线,所述天线具有缩小的尺寸、更宽的频带、改进的薄外形以及适合于金属的优点。
根据本发明的一个方面,提供一种天线,包括:电介质基板;设置在所述电介质基板第一表面上的接地电极;设置在所述电介质基板第二表面上的第一天线元件以及第二天线元件,所述第一天线元件和第二天线元件具有同样的谐振频率和同样的品质因数;连接所述第一和第二天线元件的传输线;以及设置在所述传输线中的馈电点。
本发明的目的和优点将通过权利要求书中特别指出的元件及其结合来实现和获得。
容易理解的是,前面概括性的描述和下面细节的描述都是典型性和解释性的,并不限制本发明。
附图说明
图1示出了一偶极子天线;
图2是所述偶极子天线的示意性天线增益特性图;
图3是所述偶极子天线的示意性馈电点阻抗图;
图4是一种为了使用偶极子天线作为RFID标签的天线而缩小了尺寸的偶极子天线的天线增益特性图;
图5是所述缩小尺寸的偶极子天线的示意性馈电点阻抗特性图;
图6是一种用于RFID标签的采用贴片(patch)天线的天线图;
图7是图6所示的天线的示意性天线增益特性图;
图8是图6所示的天线的示意性馈电点阻抗特性图;
图9是针对RFID标签的设计为加宽频带的贴片天线的天线增益图;
图10是参考图9所描述的贴片天线的示意性馈电点阻抗特性图;
图11是根据第一实施例的RFID系统所采用的标签的透视图;
图12是根据第一实施例的天线的示意性天线增益特性图;
图13是根据第一实施例的天线的示意性输入阻抗特性图;
图14是根据第二实施例的RFID系统所采用的标签的透视图;
图15是根据第二实施例的天线的示意性天线增益特性图;
图16是根据第二实施例的天线的示意性输入阻抗特性图;
图17是根据第三实施例的RFID系统所采用的标签的透视图;
图18是根据第三实施例的天线的示意性天线增益特性图;
图19是根据第三实施例的天线的输入阻抗特性图;
图20是用于RFID系统的另一种标签的透视图。
具体实施方式
目前,用于多频段的带状天线和宽带天线已经发展应用在无线局域网(Local Area Network,LANS)、蜂窝电话以及UWB(Ultra-Wide Band,超宽带)系统中。优选地,RFID系统采用宽带、多频段以及小尺寸的天线。用在RFID系统的天线易于被周围环境所影响,并且设计为在不同国家具有不同频率。更具体地,在UHF频段的RFID标签指定为美国的915MHz,日本的953MHz以及欧洲的860MHz。为了使RFID标签在世界范围内应用于采用不同频段的不同国家,天线优选为能够覆盖不同的频段。偶极子天线和贴片天线是典型的微带天线,具有以下的缺点和优点。
图1示出了具有设置在天线元件2a和2b之间的馈电点3的示意性偶极子天线1,图2示出了偶极子天线1的示意性天线增益特性,以及图3示出了偶极子天线1的馈电点阻抗特性。在理想天线结构和环境的条件下实现了宽频带。
如果偶极子天线1被折成或者弯曲成小尺寸,偶极子天线1会具有较窄的带宽和降低的增益。另外,被折或弯曲的偶极子天线1会更容易被其连接的诸如金属的部件的属性所影响。
图4示出了用作RFID标签的天线的缩小尺寸的偶极子天线的示意性天线增益,以及图5示出了缩小尺寸的偶极子天线增益的馈电点阻抗特性。图4和图5示出了偶极子天线的尺寸缩小缩窄了带宽和降低了天线增益。
图6示出了用在RFID标签中的使用普通贴片天线的天线4;以及图7示出了天线4的示意性天线增益特性。天线4具有接地部件5、贴片天线部6和馈电点7。
与偶极子天线相比,使用贴片天线的天线4具有窄带宽的辐射特性。天线4使用带有接地部件5的天线基板,这样仅在天线4的一侧获得辐射图。在接地部件5用于将天线5附着到附着部件上的情况中,该附着部件可由金属制成。然而,天线4具有窄的带宽。通过促使RFID标签的薄型化,也就是说,通过使天线基板变窄,带宽会趋向于变得更窄。一般地,贴片天线的带宽可通过以各种方式耦合多个谐振器或者加厚天线基板而被加宽。例如,天线基板设置为等于或大于3mm。图9示出了设计来加宽频带的RFID标签的贴片天线的示意性天线增益特性。图10示出了馈电点阻抗特性。如图9所示,带宽的加宽降低了天线增益。天线基板很厚。
一般地,天线可以设计如下。带状天线使用形成在天线基板上的谐振器,并在该谐振器上的特定位置处具有馈电点,其中在所述特定位置处天线与发射机输出阻抗共轭匹配。更具体地,诸如偶极子天线或贴片天线的天线基本上采用一个谐振器,并在天线与信号源阻抗共轭匹配的特定位置处具有馈电点。可能会用到用于共轭匹配的匹配电路。
为了加宽带宽,贴片天线可采用具有不同谐振频率的多谐振器。然而,在一些情况下,并不能获得令人满意的宽带特性。
如上所述,很难实现在UHF波段的用于RFID标签的微带天线同时具有缩小的尺寸、更宽的带宽、改善的薄轮廓以及适合于金属。
根据实施例的一方面,提供一种天线,能够取得缩小化的尺寸,更宽带宽,改进的薄外型以及适合于连接金属的优点。
第一实施例
图11是用于RFID系统的标签100的透视图。标签100具有装配有诸如大规模集成芯片300的电路芯片的天线200。标签100是根据本发明的一个方面的电子设备的一个示意性的实例。实际中,标签100可被保护部件覆盖,为了简化,这里没有示例出该保护部件。
天线200具有电介质基板26以及设置在电介质基板26一表面上的接地电极29。天线200具有设置在电介质基板26的另一表面上的第一天线元件21和第二天线元件25。进一步地,天线200具有用于连接第一天线元件21和第二天线元件25的第一传输线22以及第二传输线24。第一传输线22从第一天线元件21延伸出,以及第二传输线从第二天线元件25延伸出。第一传输线22的末端与第二传输线的末端彼此面对。彼此面对的传输线22和24的末端形成馈电部23。第一天线元件21通过设置在电介质基板26一端上的电极27与接地电极29相连接。同样地,第二天线元件25通过设置在电介质基板26所述端上的电极28与接地电极29相连接。
这样构造的天线200可具有如下典型的尺寸。电介质基板26的长度L1等于38mm,以及其宽度等于40mm。电介质基板26的厚度T1等于1mm。第一天线元件21的长度L2等于36mm,以及其宽度W2等于12mm。第二天线元件25具有与第一天线元件21同样的尺寸。在第一天线元件21和第二天线元件25之间的宽度设为等于12mm。
第一天线元件21和第二天线元件25可具有如下的条件。第一天线元件21和第二天线元件25印刷在电介质基板26上,并具有短路端和开路端。具有短路端和开路端的第一天线元件21用作λ/4微带谐振器,在频率为fR1处谐振,其中fR1描述如下:
fR1=c/4(L2+T1)ϵr]]>
其中L2+T1表示第一天线元件21的长度,c是光速,εr是电介质基板26的介电常数。同样地,第二天线元件25用作λ/4微带谐振器,在频率为fR1处谐振,其中fR1描述如下:
fR2=c/4(L2+T1)ϵr]]>
其中L2+T1表示第二天线元件25的长度。因此,天线200具有两个λ/4微带谐振器的结构。应当注意的是,第一天线元件21和第二天线元件25的长度L2+T1考虑了电介质基板26的厚度。
第一天线元件21和第二天线元件25具有如下的关系:
fR1=fR2
Q1=Q2
其中Q1是第一天线元件21的品质因数,以及Q2是第二天线元件25的品质因数。
品质因数能被写作如下的一般表达式:
Q=(1/R)×(L/C)1/2
用作谐振器的天线元件表示成电感元件L和电容元件C组合的等效电路。当天线元件被作为谐振器考虑时,通过传输线连接的多个天线元件的功能如下。
根据分布常数理论,天线元件在从开路端到输入/输出端口比λ/4更短的距离范围内作为电容元件,并在从短路端到输入/输出端口的比λ/4更短的距离范围内作为电感元件。安置在电介质基板上的天线元件的特征阻抗根据其尺寸和电介质基板的厚度而被限定。
因而,第一天线元件21的Q值(品质因数)根据第一天线元件21的尺寸、输入/输出端口的位置以及电介质基板26的厚度而被限定。同样地,第二天线元件25的品质因数根据第二天线元件25的尺寸、输入/输出端口的位置以及电介质基板26的厚度而被限定。
第一天线元件21和第二天线元件25的长度L2和宽度W2以及电介质基板26的厚度T1被确定,以使获得一个所需要的品质因数。
用于连接第一天线元件21和第二天线元件25的第一传输线22和第二传输线24的长度为第一天线元件21和第二天线元件25的谐振频率fR1和fR2的λ/4(fR1=fR2)。
馈电部23的位置被选择为能使天线与信号源的阻抗共轭匹配。馈电部23包括用于RFID的LSI芯片300。馈电部23被供应有电源。天线200和设置在馈电部23内的LSI芯片300一起形成标签100。
图12示出了如上所述构造的天线200的天线增益特性。相比于图2和图4中所示的偶极子天线的天线增益特性和图7中所示的具有加宽带宽的贴片天线的天线增益特性,天线200在极宽带宽的范围内具有良好的增益特性。
用于RFID系统的标签100可附着到比如世界各地分销的商品上。在标签100和主计算机之间的信息传达发生在世界的各个地区。RFID系统在欧洲指定频率为860MHz,在美国指定频率为915MHz,以及在日本为953MHz。图7所示的贴片天线设计为覆盖上述频率的所有波段。然而,贴片天线的天线增益特性降低了。进一步地,天线基板很厚。相比之下,本发明实施例的天线200覆盖了所有的波段,并且电介质基板26非常薄,可达1mm,并取得小型化的外形。
天线200为在后部上具有接地电极的微带天线。天线200具有缩小化的尺寸和薄型化的结构,并可连接在金属部件上。
图13示出了图11描述的天线200的输入阻抗特性。与传统天线相比,图13没有示出在输入阻抗特性上具有很大的改善,但是,值得注意的是,天线的辐射特性是被天线电极上的电流分布所决定。因此,天线增益的提高可与输入阻抗特性的提高不相关。
第二实施例
参考图14-16描述第二实施例,图14是用于RFID系统标签101的透视图。标签101具有装配有LSI芯片300的天线400。标签101是一示意性电子设备。实际上,标签101可被保护部件覆盖,为了简化,这里没有示例出该保护部件。
天线400具有电介质基板46和在电介质基板46一表面上的接地电极49。天线400具有第一天线元件41和设置在电介质基板46另一表面上的第二天线元件45。天线400具有用于连接第一天线元件41和第二天线元件45的第一传输线42和第二传输线44。第一传输线42从第一天线元件41延伸出,以及第二传输线44从第二天线元件45延伸出。第一传输线42的一端和第二传输线的一端彼此面对,从而形成一馈电部43。第一天线元件41通过设置在电介质基板46一端的电极47连接到接地电极49上,并且第二天线元件45通过设置在电介质基板46另一端上的电极48连接到接地电极49上。电极47和48设置在电介质基板46的对端上。这样的电极47和48安置方式不同于第一实施例所采用的方式。
天线400与第一实施例中的天线200相似。然而,天线400具有不同于天线200的尺寸。下面是天线400的示意性尺寸。电介质基板46的长度L3等于30mm,且宽度等于52mm。电介质基板46的厚度为1mm。第一天线元件41的长度L4等于26mm,以及宽度等于18mm。第二天线元件45朝向第二天线元件41所朝向的相反方向。第一天线元件41和第二天线元件45具有同样的尺寸。在第一天线元件41和第二天线元件45之间的距离W6设置为等于12mm。
第一天线元件41和第二天线元件45可满足以下条件。第一天线元件41和第二天线元件45印刷在第一电介质基板46上,并具有短路端和开路端。具有短路端和开路端的第一天线元件41用作λ/4微带谐振器,在频率为fR1处谐振,其中fR1描述如下:
fR1=c/4(L2+T1)ϵr]]>
其中L4+T2表示第一天线元件41的长度,c是光速,εr是电介质基板46的介电常数。同样地,第二天线元件45用作λ/4微带谐振器,在频率为fR1处谐振,其中fR1描述如下:
fR2=c/4(L2+T1)ϵr]]>
其中L4+T2表示第二天线元件45的长度。因此,天线400具有两个λ/4微带谐振器的结构。应当注意的是,第一天线元件41和第二天线元件45的长度L4+T2考虑了电介质基板46的厚度。
第一天线元件41和第二天线元件45具有如下的关系:
fR1=fR2
Q1=Q2
其中Q 1是第一天线元件41的品质因数,以及Q2是第二天线元件45的品质因数。
品质因数能被写作如下的一般表达式:
Q=(1/R)×(L/C)1/2
用作谐振器的天线元件表示成电感元件L和电容元件C组合的等效电路。当天线元件作为谐振器考虑时,通过传输线连接的多个天线元件的功能如前所述。
第一天线元件41的品质因数根据第一天线元件41的尺寸、输入/输出端口的位置以及电介质基板46的厚度而被限定。同样地,第二天线元件45的品质因数根据第二天线元件45的尺寸、输入/输出端口的位置以及电介质基板46的厚度而被限定。
第一天线元件41和第二天线元件45的长度L4和宽度W5以及电介质基板46的厚度T2被确定,以使获得一个所需要的品质因数。
用于连接第一天线元件41和第二天线元件45的第一传输线42和第二传输线44的长度为第一天线元件41和第二天线元件45的谐振频率fR1和fR2的λ/4(fR1=fR2)。
馈电部43的位置被选择为能使天线与信号源的阻抗共轭匹配。馈电部43包括用于RFID的LSI芯片300。馈电部43被供应有电源。天线400和设置在馈电部43内的LSI芯片300一起形成标签101。
图15示出了如上所述构造的天线400的天线增益特性。与图2和图4中所示的偶极子天线的天线增益特性和图7中所示的具有加宽带宽的贴片天线相比,天线400在极宽带宽范围内具有良好的增益特性。
天线400为在后部上具有接地电极的微带天线。天线400具有缩小化的尺寸和薄型化的结构,并可连接在金属部件上。
图16示出了图14描述的天线400的输入阻抗特性。与传统天线相比,图16没有示出在输入阻抗特性上具有很大的改善,但是,值得注意的是,天线的辐射特性是被天线电极上的电流分布所决定的。因此,天线增益的提高可与输入阻抗特性的提高不相关。
第三实施例
参考图17描述根据第三实施例的天线600。图17为内部结合有天线600的标签102的透视图。天线600在下面的描述中不同于第一实施例中的天线200。在天线200中,第一天线元件21和第二天线元件25印刷在电介质基板26上。每个第一天线元件21和第二天线元件25的一端被短路,且另一端被开路。相反地,第三实施例的天线600具有第一天线元件61和第二天线元件65,每个第一天线元件61和第二天线元件65的两端都被开路。与第一实施例中的情况一样,接地电极69设置在电介质基板66的表面上。
例如,天线600可具有如下的尺寸。电介质基板66的长度L5等于70mm,且宽度等于40mm。电介质基板66的厚度等于1mm。第一天线元件61的长度L6等于66mm,且宽度等于8mm。第二天线元件65具有66mm的长度和8mm的宽度。第二天线元件65具有与第一天线元件61同样的尺寸。在第一天线元件61和第二天线元件65之间存在10mm的距离W9。
具有开路端的第一天线元件61用作λ/2微带谐振器,在频率为fR1处谐振,其中fR1描述如下:
fR1=c/2L7ϵr]]>
这里L6表示为第一天线元件61的长度,c是光速,εr是电介质基板46的介电常数。同样地,第二天线元件65用作λ/2微带谐振器,在频率为fR1处谐振,其中fR1描述如下:
fR2=c/2L7ϵr]]>
这里L6表示为第二天线元件65的长度.这样,天线600具有两个λ/2微带谐振器的结构。
品质因数能被写作如下的一般表达式:
Q=(1/R)×(L/C)1/2
用作谐振器的天线元件表示成电感元件L和电容元件C组合的等效电路。当天线元件作为谐振器考虑时,通过传输线连接的多个天线元件功能如下。根据分布常数原理,天线元件在从开路端到输入/输出端口比λ/4更短的距离范围内作为电容元件,并在从短路端到输入/输出端口比λ/4更短的距离范围内作为电感元件。设置在电介质基板上的天线元件的特征阻抗根据其尺寸和电介质基板的厚度而被限定。
因而,第一天线元件61的品质因数根据第一天线元件61的尺寸、输入/输出端口的位置以及电介质基板66的厚度而被限定。同样地,第二天线元件65的品质因数根据第二天线元件65的尺寸、输入/输出端口的位置以及电介质基板66的厚度而被限定。
第一和第二天线元件61和65的长度L6和宽度W8以及电介质基板66的厚度T3被确定,以使获得一个所需要的品质因数。
用于连接第一天线元件61和第二天线元件65的第一传输线62和第二传输线64的长度为第一天线元件61和第二天线元件65的谐振频率fR1和fR2的λ/4(fR1=fR2)。
馈电部63的位置被选择为能使天线与信号源的阻抗共轭匹配。馈电部63包括用于RFID的LSI芯片300。馈电部63被供应有电源。天线600和设置在馈电部63内的LSI芯片300一起形成标签102。
天线600为在后部上具有接地电极的微带天线。天线600具有缩小化的尺寸和薄型化的结构,并可连接在金属部件上。
图18示出了如上所述构造的天线600的天线增益特性。相比于图2和图4中所示的偶极子天线的天线增益特性和图7中所示的具有加宽带宽的贴片天线,天线200在极宽带宽的范围内具有良好的增益特性。进一步地,电介质基板66非常薄,可达1mm,并取得小型化的外形。
图19示出了图17描述的天线600的输入阻抗特性。与传统天线相比,图19没有示出在输入阻抗特性上具有很大的改善,但是,值得注意的是,天线的辐射特性是被天线电极上的电流分布所决定的。因此,天线增益的提高可与输入阻抗特性的提高不相关。
图20示出了相应于天线600一种变化形式的天线800。天线800具有第一传输线82和第二传输线84,代替第一传输线62和第二传输线64。天线800的其他结构元件和天线600的一样。第一传输线82和第二传输线84交替设置或对称在馈电部63四周。只要在满足前述的谐振频率和品质因数这样的条件下,这样构造的天线800与天线600一样展现出良好的天线特性。天线800能够覆盖各个国家所采用的RFID系统的不同频段。
这里引证的所有例子和条件语言都用于教导目的,以使帮助读者理解本发明和发明人为了深化现有技术所贡献的概念,并被解释为不限制于这些具体引证的示例和条件,说明书中的这些实例的组织与显示本发明的优劣无关。尽管本发明的实施例已经被详细描述,但应理解到在不背离本发明的精神和范围之内所作的各种变化、替换以及改动。

天线以及装配有所述天线的设备.pdf_第1页
第1页 / 共28页
天线以及装配有所述天线的设备.pdf_第2页
第2页 / 共28页
天线以及装配有所述天线的设备.pdf_第3页
第3页 / 共28页
点击查看更多>>
资源描述

《天线以及装配有所述天线的设备.pdf》由会员分享,可在线阅读,更多相关《天线以及装配有所述天线的设备.pdf(28页珍藏版)》请在专利查询网上搜索。

一种天线,包括:电介质基板,设置在电介质基板第一表面上的第一接地电极,设置在所述电介质基板第二表面上的第一天线元件和第二天线元件,所述第一天线元件和第二天线元件具有相同的谐振频率和相同的品质因数,连接第一天线元件和第二天线元件的传输线,以及设置在所述传输线中的馈电部。本发明还提供装配有所述天线的设备。 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 基本电气元件


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1