用于半导体封装的Ag基合金引线 【技术领域】
本发明涉及一种半导体封装,更具体地,本发明涉及一种用于引线结合的银(Ag)基合金引线。
背景技术
在半导体封装中,半导体芯片利用引线结合法电连接到封装基板上。在传统的半导体封装中,半导体芯片的铝垫和封装基板利用金(Au)引线结合。由于金具有高化学稳定性和高导电性,所以其已经得到广泛使用。然而,为了满足对于降低半导体工业成本并解决金价造成的成本增加的持续要求,需要一种代替金引线的新引线。
例如,日本专利申请公开号第1998-326803、1999-67811、1999-67812、以及2000-150562号公开了Au-Ag合金引线。然而,此Au-Ag合金引线仍然包括高组成比例的Au,其限制了成本的降低。
比传统的Au引线便宜30%到50%的Ag引线可以认为是另一实例。然而,Ag引线具有结合到铝(Al垫)时存在可靠性的问题。具体如图1所示,当进行高湿度可靠性试验时,Ag引线和Al垫的结合表面最有可能受到侵蚀或出现芯片裂纹,使得结合强度显著降低。高湿度可靠性试验总体上利用压力蒸煮锅试验(PCT)进行。即使在PCT中96小时后,Au引线的结合强度也很难变化。但即使在PCT中的24小时后,Ag引线的结合强度就接近零。
此外,Ag引线具有较差的塑性的缺点,其降低了产品的屈服性。因此,Ag引线的制作需要许多加热退火操作,这都将增加制造成本。
【发明内容】
本发明提供一种用于半导体封装的Ag基合金引线,其具有高的可靠性并需要较低的制造成本。
根据本发明,提供一种用于半导体封装的Ag基合金引线,包括0.05~5wt%的从由铂(Pt)、钯(Pd)、铑(Rh)、锇(Os)、金(Au)、以及镍(Ni)组成的组中选取的第一添加成分的至少一种,且所述Ag基合金引线所包括的其余的金属可以为Ag。
根据本发明的另一方面,提供一种用于半导体封装的Ag基合金引线,包括3wtppm~5wt%的由铜(Cu)、铍(Be)、钙(Ca)、镁(Mg)、钡(Ba)、镧(La)、铈(Ce)以及钇(Y)组成的组中选取的第二添加成分的至少一种,且所述Ag基合金引线所包括的其余的金属可以为Ag。
根据本发明的另一方面,提供一种用于半导体封装的Ag基合金引线,包括0.05~5wt%的第一添加成分、3wtppm~5wt%的第二添加成分,且所述Ag基合金引线所包括的其余的金属可以为Ag。
术语wt%或wtppm指以%或ppm表示的成分重量与引线的总重量的比。
【附图说明】
参照相应的附图对下面示例性实施例的具体说明,将使本发明的以上和其它特征和优点变得更加清晰和容易理解。
图1是显示在压力蒸煮锅实验(PCT)中的Au引线和Ag引线之间的高湿度可靠性的图表。
【具体实施方式】
下面将参照附图具体说明本发明,其中显示了本发明的示例实施例。然而,本发明可以以多种不同的形式实施,并不构成为局限于在此提出的实施例;反之,这些实施例提供为使得此公开彻底且完整、并完全将本发明的概念转达给本领域的普通技术人员。
用于根据本发明的实施例的半导体封装的引线用于将半导体芯片结合到封装基板。因此,用于根据本发明的实施例的半导体封装的引线可以称为结合引线。
根据本发明地实施例的Ag基合金引线可以通过将预定量的添加成分与纯Ag合成为合金而形成。然而,虽然没有具体说明,但除了Ag和添加成分外,Ag基合金引线会不可避免地包含杂质。这是因为即使精炼时,纯Ag也可能包含少量的杂质,且当合成为合金时,少量的杂质会被包含到Ag合金。然而,因为与添加成分相比,不可避免的杂质量可以忽略不计且没有规律,所以,通常不能发现不可避免的杂质。因此,本发明的范围不局限于是否不可避免地包含杂质。
根据本发明的实施例的Ag基合金引线可以包括由铂(Pt)、钯(Pd)、铑(Rh)、锇(Os)、金(Au)、以及镍(Ni)组成的组中的第一添加成分的至少一种,而其余的金属可以为Ag。例如,Ag基合金引线可以由含量为0.05~5wt%的第一添加成分组成,并且所述Ag基合金引线所包括的其余的金属可以为Ag。
第一添加成分改进了Ag基合金引线的高湿度可靠性。第一添加成分可以抑制氧化膜的形成以及在Ag基合金引线和半导体芯片的衬垫之间的结合表面中的电化学腐蚀。因此,可以防止在结合表面中出现芯片裂纹,并改善结合强度。
然而,如果第一添加成分的量低于0.05wt%,则不能充分改善包括Ag基合金引线的半导体封装的高湿度可靠性。例如,芯片裂纹可能在Ag基合金引线和衬垫之间的结合表面中出现,从而降低其间的结合强度。此外,如果第一添加成分的量大于5wt%,则Ag基合金引线的电阻将增加,并且Ag基合金引线的游离空气球在结合表面中硬化,这种硬化会产生芯片裂纹。因此,会大大地降低引线和半导体芯片的电连接的可靠性。
根据本发明的另一实施例的Ag基合金引线可以包括由铜(Cu)、铍(Be)、钙(Ca)、镁(Mg)、钡(Ba)、镧(La)、铈(Ce)以及钇(Y)组成的组中选取的第二添加成分的至少一种,且所述Ag基合金引线所包括的其余的金属可以为Ag。
例如,第二添加成分可以包括含量为0.1~5wt%的Cu。作为另一实例,第二添加成分可以包括3~100wtppm的由Be、Ca、Mg、Ba、La、Ce以及Y组成的组中选取的至少一种材料。可供选择地,第二添加成分可以包括含量为0.1~5wt%的Cu、以及3~100wtppm的由Be、Ca、Mg、Ba、La、Ce以及Y组成的组中选取的至少一种材料。
第二添加成分可以有助于进一步改进可使用性和拉伸强度,而不是Ag基合金引线的高湿度可靠性。因此,与传统的技术相比,当制作Ag基合金引线时,可以极大地减少加热退火操作的数量,其也极大地降低了制作成本。
如果Cu的含量低于0.1wt%,则可以忽略可使用性的改善。另外,如果Cu的含量大于5wt%,则Ag基合金引线的电阻增加,并出现降低结合强度的芯片裂纹。
如果Be、Ca、Mg、Ba、La、Ce以及Y的含量低于3wtppm,则可以忽略可使用性的改善。另外,如果Be、Ca、Mg、Ba、La、Ce以及Y的含量大于100wtppm,则当游离空气球形成于结合表面时,将形成固化凹痕,使得结合强度极大地降低。
根据本发明的另一实施例的Ag基合金引线可以包括上述第一添加成分和第二添加成分,且所述Ag基合金引线所包括的其余的金属可以为Ag。在此情况下,可以改进高湿度可靠性和Ag基合金引线的可使用性。
在下文中,将参照示例实施例和比较实例更具体地说明Ag基合金引线的特征的添加成分的作用。
表2
表1显示了根据添加成分的含量的Ag基合金引线。实验实施例1到16显示了Ag基合金引线,其每一条都包含第一添加成分中的一种,而实验实施例17到32显示了Ag基合金引线,其每一条都包含第二添加成分中的一种。实验实施例33到41显示了Ag基合金引线,其每条都包含第一添加成分中的至少两种或第二添加成分中的至少两种、或第一添加成分和第二添加成分。比较实例1到3表示除了第一添加成分和第二添加成分之外,Ag基合金引线中的每条还包含另外的添加成分。
表2显示了相对显示在表1中的Ag基合金引线的特性的实验结果。在表2中,高湿度可靠性由在压力蒸煮锅试验(PCT)中的结合强度(BPT值)表示。Ag基合金引线具有大约30μm的直径,而PCT在121℃下执行大约96小时。对于结合强度的可靠性,◎表示非常有利的状态,○表示良好状态,△表示正常状态,而×表示不利状态。可使用性通过每1km的Ag基合金引线断开的次数测量,因此,较小的数值表示较好的特性。保持期限试验显示每日时间在Ag基上形成100nm厚度的氧化膜的消耗,因此,较大的数值表示较好的特性。
参照表1和2,实验实施例1到7显示钯(Pd)、即第一添加成分的含量对Ag基合金引线的特性所起的作用。在实验实施例2到5中,Pd的含量为0.05~5wt%,Ag基合金引线的可靠性优良,而可使用性优于比较实例1到3。然而,在实验实施例1中,Pd的含量为0.01wt%,结合强度较差,且保持期限周期降低。另外,在实验实施例6和7中出现裂纹,Pd的含量分别为10和30wt%,
实验实施例8到16显示包含Pt、Rh、Os、Au和Ni的第一添加成分中的一种的含量对Ag基合金引线的特性所起的作用。在实验实施例8到12中、以及14到16中,当第一添加成分的含量为0.5~5wt%时,Ag基合金引线的可靠性优良,而可使用性优于比较实例1到3。同时,在实验实施例13中,Ni的含量为0.01wt%,结合强度较差。
因此,从以上实验结果可以推断,包括Pd、Pt、Rh、Os、Au和Ni的第一添加成分的作用相似地影响到Ag基合金引线的特性的作用。因此,对于Pd和Ni的实验结果可以相似地应用到Pt、Rh、Os、Au。
实验实施例17到21显示Cu,也就是第二添加成分对Ag基合金引线的特性所起的作用。在Cu的含量为0.1~5wt%的实验实施例18到20中,可使用性相对比较实例1到3获得了极大的改善,此外,比实验实施例1到16稍微有所改进。然而,Cu的含量为5wt%的实验实施例17显示出可以忽略的可使用性的改进。另外,Cu的含量为10wt%的实验实施例17显示出电阻增加且芯片出现裂纹。
实验实施例22到26显示Ca,也就是第二添加成分对Ag基合金引线的特性所起的作用。在Ca的含量为3~100wtppm的实验实施例23到25中,可使用性相对比较实例1到3获得了极大的改进,此外,比实验实施例1到16稍微有所改进。然而,Ca的含量为1wtppm的实验实施例22显示电阻增加且芯片出现裂纹。在Ca的含量为500wtppm的实验实施例26中,芯片出现裂纹,且在游离空气球中产生凹痕。
实验实施例27到32显示包含Be、Mg、Ba、La、Ce以及Y的第二添加成分对Ag基合金引线的特性所起的作用。Be、Mg、Ba、La、Ce以及Y的含量为10wt%的实验实施例27到32显示,可使用性相对比较实例1到3获得了极大的改进,并且超过实验实施例1到16而稍微有所改进。
因此,由以上实验结果可以注意到,第二添加成分的Be、Ca、Mg、Ba、La、Ce以及Y具有相似的特性。因此,相对Ca的实验结果可以相似地应用到Be、Mg、Ba、La、Ce以及Y。
实验实施例33到41显示第一添加成分的至少两种、第二添加成分的至少两种、或第一添加成分和第二添加成分的混合对Ag基合金引线的特性所起的作用。实验实施例33到41满足从实验实施例1到32的结果得出的第一添加成分和第二添加成分的中每个的优选含量。在此情况下,结合强度和可使用性都比比较实例1到3的结合强度和可使用性具有更进一步地改进。因此,在Ag基合金引线中可以共同包括第一添加成分和第二添加成分,而彼此没有不利影响。
与典型地使用Au引线相比,根据本发明的Ag基合金引线可以增加导电性,同时显著地降低单位成本。
另外,根据本发明的Ag基合金引线具有高于典型地使用Au引线的结合强度的进一步增加的结合强度,因此,具有增加的可靠性。此外,Ag基合金引线的可使用性增加,因此,降低了Ag基合金引线的制作成本。
尽管已经示出并说明了本发明的实施例,然而本领域普通技术人员将认识到的是,在不背离本发明的原理和精神的情况下可以对此实施例进行变更,本发明的范围由权利要求及其等效形式所限定。