宽带平面天线 【技术领域】
本发明涉及一种宽带天线;具体而言,本发明涉及一种供无线通信网络信号传输使用的宽带平面天线。
背景技术
随着实体因特网的普遍使用,人类渐渐将注意力转移到无线、远距、宽带的方式取代实体宽带的布线,加速宽带使用用户的普及率。因此业界不断推出更先进的无线通信网络技术及标准。例如,国际电气和电子工程师学会(IEEE)在802.11所定义的WiFi无线网络标准及最近802.16所订定的全球互通微波存取(WiMAX)标准。尤其以WiMAX而言,其传输距离已可由以公尺计算增加到数十公里,且具有无线宽带的特性,可大幅改善过往技术的缺点。
为配合无线通信网络技术的提升,作为无线信号收发用的天线亦需因应改良,方能配合新的技术使用。图1所示为美国专利US6861986所公开的传统双频天线。此双频天线包含有第一辐射体31及第二辐射体32,两者均连接于接地面4。信号经由馈入点61以直接馈入方式馈入,以激发第一辐射体31产生高频模态,其操作中心频率落在5.25GHz。信号直接馈入并可激发第二辐射体32产生低频模态,其操作中心频率落在2.45GHz。此外,第二辐射体32的长度约为其操作频率的1/4波长。
由于此天线采用直接馈入方式馈入信号,低频模态的频宽约在200MHz,未能符合WIMAX的宽带需求。此外,为配合低频模态的操作频率,第二辐射体32的长度无法缩减,因此将无法因应各式电子装置小型化的需求。
【发明内容】
本发明的一目的在于提供一种宽带平面天线,能藉由减少物料却能达到同样功能的设计,大幅压低生产耗费。
本发明的另一目的在于提供一种宽带平面天线,其藉由直接馈入及耦合馈入方式形成三种不同频带,以符合不同频率的需求。
本发明的另一目的在于提供一种宽带平面天线,针对特定频带减少反射波,进而达到增加电磁波发送功率的目的,亦可因此比一般通用频带天线省电。
本发明的宽带平面天线,包含基板、第一辐射体、第二辐射体、第三辐射体、接地部以及信号源。基板具有相对的一第一表面及一第二表面,换言之,第一表面与第二表面位于不同的基板表面。本发明的第一辐射体设置于第一表面上。第二辐射体与第一辐射体连接于连接处,且第二辐射体设置于第一表面或第二表面其中之一;换言之,第二辐射体可与第一辐射体设置于同一基板表面或不同的基板表面。
本发明的第三辐射体设置于第一表面或第二表面其中之一;换言之,第三辐射体可依设计需求或场型变化,而调整其设置于第一表面或第二表面。
本发明的接地部与第三辐射体相接,接地部包含第一接地部及第二接地部。其中,第三辐射体具有短边及长边,短边与接地部连接,短边与长边相互连接且延伸方向相互垂直,长边朝第一辐射体延伸,第二辐射体设置于第三辐射体与接地部之间。
本发明的信号源馈入高频信号包含正信号及负信号。其中,正信号经连接处直接馈入,分别激发第一辐射体及第二辐射体形成第一频段模态及第二频段模态,而负信号与接地部耦接进而耦合馈入,激发第三辐射体形成第三频段模态。
本发明能藉由缩小尺寸及薄型化的设计,大幅压低生产耗费,并针对特定频带设计辐射体的方向,以减少反射波并增加电磁波功率,故较为省电。
【附图说明】
图1为传统的双频天线的示意图;
图2a为本发明的天线的实施例的第一表面示意图;
图2b为图2a所示实施例的第二表面示意图;
图3a为图2a所示实施例的天线电压驻波比(VSWR)示意图;
图3b为图2a所示实施例的场型示意图;
图4a为本发明的天线的另一实施例的第一表面示意图;
图4b为图4a所示实施例的第二表面示意图;
图5a为本发明的天线的其他实施例的第一表面示意图;
图5b为图5a所示实施例的第二表面示意图;
图6a为图5a所示实施例的天线电压驻波比示意图;
图6b为图5a所示实施例的场型示意图;
图7a为本发明的天线的变化实施例的第一表面示意图;
图7b为图7a所示实施例的第二表面示意图;
图8a为本发明的天线的变化实施例的第一表面示意图;
图8b为图8a所示实施例的第二表面示意图;
图9a为本发明的天线的变化实施例的第一表面示意图;以及
图9b为图9a所示实施例的第二表面示意图。
主要组件符号说明:
100宽带平面天线 530短边
200基板 600接地部
210第一表面 610第一接地部
220第二表面 630第二接地部
300第一辐射体 700信号源
310回绕部 730第一频段模态
400第二辐射体 750第二频段模态
500第三辐射体 770第三频段模态
510长边 800连接处
515延伸端部 900半开放区域
【具体实施方式】
本发明的目的在于提供一种宽带平面天线及其制造方法,能藉由缩小尺寸及薄型化的设计,大幅压低生产耗费,并针对特定频带设计辐射体的方向,以减少反射波并增加电磁波功率,故较为省电。在较佳实施例中,本发明的宽带平面天线具有应用于多样化电子装置的无线信号传输功能。电子装置较佳包含笔记本型计算机、桌上型计算机、主机板、移动电话、个人数字助理、全球定位系统、电子游戏机等。其所收发的无线信号则应用于包含各式无线局域网络(WLAN)、全球互通微波存取技术(WIMAX)、其他无线通信方式。
图2a及图2b所示为本发明的宽带平面天线的实施例示意图。如图2a及图2b所示,宽带平面天线100包含基板200、第一辐射体300、第二辐射体400、第三辐射体500、接地部600、信号源700。基板200较佳以PET等塑料或其他具有介电性的材质制成,例如印刷电路板(PCB)、可挠性电路板(FPC)等,均可应用作为基板200。在较佳实施例中,基板200的厚度小于1mm,但不以此为限。基板200具有相对的第一表面210及第二表面220;图2a所示即为第一表面210的实施例,而图2b则为相应的第二表面220配置实施例。
如图2a所示,第一辐射体300设置于基板200的第一表面210上。在较佳实施例中,第一辐射体300为设置于第一表面210上的金属线或具其他几何形状的金属微带。第一辐射体300较佳是以印刷的方式形成于第一表面210上,然而在不同实施例中,亦可以其他方式形成第一辐射体300。此外,如图4a及图4b所示的实施例中,第一辐射体300的面积及形状可依阻抗匹配的需求加以调整。
第二辐射体400与第一辐射体300相接于连接处800,第二辐射体400较佳设置于基板200的第一表面210;然而在其他实施例中,第二辐射体400亦可设置于第二表面220上;换言之,第一辐射体300与第二辐射体400可设置于相对不同表面上;在此实施例中,连接处800可贯通基板200而连接分别设置于第一表面210及第二表面220的第一辐射体300及第二辐射体400。本发明的第二辐射体400较佳为以印刷形成的金属线或金属微带。如图4a及图4b所示的实施例中,第二辐射体400的面积及形状亦可依阻抗匹配的需求加以调整。
在图2a及图2b所示的实施例中,第二辐射体400设置于第一表面210上,因此与第一辐射体300位于相同表面上,且为同一金属微带的相对两端;然而,当第二辐射体400与第一辐射体300分别位于不同平面时,两者间的间距亦可由基板200的厚度提供;而当第二辐射体400设置于第二表面220时,其投影范围不重叠于第一辐射体300。在图2a及图2b所示的实施例中,第二辐射体400朝远离第一辐射体300方向延伸。然而在如图7a及7b所示的其他实施例中,第二辐射体400亦可与第一辐射体300朝同方向延伸。
第三辐射体500可设置于基板200的第一表面210或第二表面220上,且较佳为印刷形成的金属线或金属微带。第三辐射体500的面积及形状亦可依阻抗匹配的需求加以调整。在图2a及图2b所示的实施例中,第三辐射体500设置于第二表面220上,并朝第一辐射体300方向延伸,且其与第一辐射体300及第二辐射体400分别位于相对的不同表面上。在图2a及图2b所示的实施例中,第三辐射体500包含长边510及短边530,而短边530与长边510连接且延伸方向相互垂直;换言之,短边530与长边510以直角形式向外延伸。第三辐射体500藉由短边530与接地部600相接;此处所言的相接方式包含耦接、焊接、金属印刷。第三辐射体500较佳朝远离接地部600的方向延伸。在此实施例中,第三辐射体500的短边530也可用往复曲折的类锯齿形式分布于基板200上,如图9a及图9b的短边530所示。藉由此设计,得以在不增加空间需求下增加第三辐射体500的路径长度,进而增加或改变第三频段模态的分布频带范围。由于第三辐射体500可为往复曲折的设计,因此可在更小的天线尺寸下得到与较大尺寸天线相同的频带分布范围。
本发明的接地部600包含第一接地部610及第二接地部630。在图2a及图2b所示的实施例中,第三辐射体500是与第二接地部630连接,因此第二接地部630与第三辐射体500皆设置于第二表面220。由于短边530与第二接地部630连接,且短边530与长边510以直角形式向外延伸。于是,长边510则朝第一辐射体300延伸。在此实施例中,第一接地部610及第二接地部630分别设置于第一表面210及第二表面220上,且是由金属片所形成的接地面,其中两者可连接而形成接地部600,但亦可不连接,即第一接地部610及第二接地部630是独立不互相连通;换言之,第二接地部630与第一接地部610不相互连通,且分别设置于基板200的不同表面。然而在其他实施例中,第二接地部630与第一接地部610可共同设置于同一表面并相互连通。进一步来说,第二接地部630与第一接地部610不互相连通,且分别设置于基板200的不同表面时的天线效能有最佳效果。
在图2a及图2b所示的实施例中,第三辐射体500与第一接地部610在第一表面210上的投影围成一半开放区域900,且第二辐射体400至少部分伸入此半开放区域900中;换言之,第二辐射体400设置于第三辐射体500与接地部600之间。此实施例中的半开放区域900形成为长条形区域,第二辐射体400则沿此长条形区域平行延伸。此外,第一辐射体300则由连接处800朝相反于半开放区域900的开口方向延伸;换言之,第二辐射体400朝远离第一辐射体300方向延伸,反之亦同。基于空间利用的考虑,第一辐射体300伸出半开放区域900的一端形成为回绕部310,使其反折朝向第一接地部610延伸;换言之,第一辐射体300自连接处800朝远离第二辐射体400方向延伸,并形成回绕部310反折朝向接地部600延伸。然而在不同实施例中,亦可使第一辐射体300直接向外伸出而不反折。此外,在其他实施例中,第一辐射体300的回绕部310的延伸端部反折可与长边510相对(图未显示)。
在图2a及图2b所示的实施例中,半开放区域900是由接地部600、短边530与长边510形成,其中短边530与长边510共同形成一倒L形与接地部600连接,藉由此一倒L形设计,可使宽带天线的体积缩小,节省空间上的需求;然而在不同实施例中,第三辐射体500亦可采用倒F形、S形或其他几何形状的设计。
信号源700将信号馈入宽带平面天线100,以激发第一辐射体300及第二辐射体400并产生无线信号收发的模态。如图2a及图2b所示,由于本发明的宽带平面天线的信号馈入方式是采用直接馈入,信号源700馈入高频信号包含正信号及负信号,其中正信号经连接处800直接馈入,分别激发第一辐射体300及第二辐射体400形成第一频段模态730及第二频段模态750,而负信号与接地部600耦接进而耦合馈入,激发第三辐射体500形成第三频段模态770。具体而言,信号源700的正信号连接于连接处800,而负信号耦接第一接地部610,第二接地部630与第一接地部610互相连通。第二辐射体400设置于长边510、短边530及接地部600的第一接地部610所围绕的半开放区域900内,且信号源700的正信号馈入处(也就是连接处800)是位于半开放区域900的范围外;然而在其他实施例中,亦可因应不同的设计需求及场型变化而进行调整。
图3a所示为本发明的宽带天线的电压驻波比的实施例示意图。在此实施例中,如图3a所示,第一频段模态730为一次高频的模态,其分布的频带范围较佳包含3.3GHz至3.8GHz间的范围。而第二频段模态750为最高频的模态,其分布的频带范围较佳包含5.15GHz至5.85GHz间的范围。以此实施例而言,第一频段模态730及第二频段模态750分布频带范围内的电压驻波比均可控制于2以下。如图3a所示的实施例中,第三频段模态770为低频的模态,其分布的频带范围较佳包含2.3GHz至2.7GHz间的范围。以此实施例而言,第三频段模态770分布频带范围内的电压驻波比均可控制于2以下。上述的频带范围仅为第三频段模态770频带范围的一部分;由于第三频段模态770采用耦合馈入方式,如图3a所示,实际的频带范围超过上述的范围,因此第一频段模态730与第三频段模态770的实际分布频带有部分重叠,但第一频段模态730与第二频段模态750不重叠。此外,在此实施例中,第一频段模态730与第三频段模态770分布的频带范围部分重叠,以形成更宽广的频带分布范围。换言之,如图3a所示,由于第一频段模态730与第三频段模态770分布的频带范围部分重叠,得以消除各模态之间可能产生的波峰,并控制电压驻波比在2以下,因此可总体视为频带范围为包含第一频段模态730及第三频段模态770的一宽带模态。
如图3a所示的实施例中,第一频段模态730为3.3GHz至3.8GHz间的范围,第一频段模态730的场型如图3b所示的3G频带(Band)。第二频段模态750为5.15GHz至5.85GHz,第二频段模态750的场型如图3b所示的5G频带。第三频段模态770为2.3GHz至2.7GHz间的范围,第三频段模态770的场型如图3b所示的2G频带。上述场型的特征在于东、南、西、北四方位皆无空场效应(场型中凹陷下去,辐射功率极小之处)。
在图5a及5b所示的实施例中,第三辐射体500的长边510延伸端部515反折朝向短边530延伸。此实施例中,第一辐射体300、第二辐射体400、第三辐射体500及接地部600皆位于第一表面210。换言之,第二表面220并无设置任何印刷形成的金属线或金属微带。由于延伸端部515的反折,及辐射体设置于相同表面,可使此实施例的场形无空场效应并维持50%左右的功率。此实施例中,第三辐射体500的短边530与第二接地部630连接,且第二接地部630与第一接地部610皆形成一设置于第一表面210的金属片,而使第二接地部630与第一接地部610形成不可分的接地部600。此实施例中,第二辐射体400亦朝远离第一辐射体300方向平行延伸入半开放区域900。换言之,第一辐射体300及第二辐射体400的游离端相互远离延伸,且第二辐射体400设置于长边510、短边530及接地部600所围绕的半开放区域900内。然而,若在图8a及8b所示的实施例中,第一辐射体300及第二辐射体400的游离端亦可向相同方向延伸。如图5a及5b所示的实施例中,第一辐射体300、第二辐射体400及第三辐射体500较佳为印刷形成的金属线或金属微带。且第一辐射体300、第二辐射体400及第三辐射体500的面积及形状亦可依阻抗匹配的需求加以调整。在此实施例中,第三辐射体500的短边530也可用往复曲折的形式分布于基板200上,如图9a及图9b的短边530所示。
如图6a所示的图5a及图5b实施例的宽带天线的电压驻波比示意图。此实施例中,第三频段模态770为低频的模态,其分布的频带范围包含2.3GHz至2.7GHz间的范围。以此实施例而言,第三频段模态770分布频带范围内的电压驻波比均可控制于2以下。上述的频带范围仅为第三频段模态770频带范围的一部分;由于第三频段模态770采用耦合馈入方式,如图6a所示,实际的频带范围超过上述的范围,因此第一频段模态730与第三频段模态770的实际分布频带有部分重叠。换言之,如图6a所示,由于第一频段模态730与第三频段模态770分布的频带范围部分重叠,得以消除各模态之间可能产生的波峰,并控制电压驻波比在2以下,因此可总体视为频带范围为包含第一频段模态730及第三频段模态770的一宽带模态。
如图6a及图6b所示的实施例中,第一频段模态730为3.3GHz至3.8GHz间的范围,第一频段模态730的场型为3G频带。第二频段模态750为5.15GHz至5.85GHz,第二频段模态750的场型为5G频带。第三频段模态770为2.3GHz至2.7GHz间的范围,第三频段模态770的场型为2G频带。上述场型的特征在于东、南、西、北四方位皆无空场效应(场型中凹陷下去,辐射功率极小之处)。
本发明已由上述相关实施例加以描述,然而上述实施例仅为实施本发明的范例。必须指出的是,已公开的实施例并未限制本发明的范围。相反地,包含于权利要求书的精神及范围内的修改及等同设置均包含于本发明的范围内。