本发明涉及电解电容器用电解液的改进,特别是与将一元羧酸的4级铵盐用作溶质的电解液有关。
电解电容器使用在铝、钽等的表面上会形成绝缘性氧化膜的所谓阀金属为阳极电极,以上述氧化膜层为介质体,使此氧化膜层的表面与将成为电解质层的电解液接触,并配置通常称为阴极的集电用电极而构成。
由于电解电容器用电解液如上所述直接接触介质体层,起真正的阴极作用,故其特性成为决定电解电容器特性的一大重要原因。电解液介于电解电容器的介质体层和集电阴极之间,等于电解液的电阻部份串联地插入在电解电容器中。为此其缺点是一旦电解液的电导率低,则会使电解电容器内部的等效串联电阻部分增大,高频率特性和损耗特性都变差。
由于有这样的背景,故一直在寻求电导率高的电解液,过去已知的有将各种无机酸、有机酸或其盐类溶解于乙二醇等的乙二醇类或醇类的质子溶剂中的电解液。特别是在该有机酸中、具有羧基的所为羧酸多以铵盐和1~3级铵盐的形式用作溶质。
作为溶质用的羧酸已知有各种各样的,其中亦有电导率相当高的,但对于种种的更高要求来讲,则电导率还不能说已足够。特别是以前在使用溶解度低的溶质等时,通常是通过有意识地添加水来设法提高电导率。但是,如最近那样,在要求能在超过100℃的高温下使用的电解电容器的使用情况中,其缺点是电解液中的水分的存在会招来介质体被膜层的劣化、并提高电解电容器的内部蒸气压力,以及因封口
部分的破损和电解液的蒸发散失而引起寿命缩短,而不能维持长时间的稳定特性。
本发明研究了在羧酸中以用链式饱和构造的所谓一元羧酸的盐作为溶质。以前使用一元羧酸的盐为溶质的有例如如特公昭54-1023号公报所述以甲酸铵为溶质,如特开昭53-138047号公报所述的以丙酸铵为溶质。这些都是以一元羧酸作为铵盐使用,但在将铵盐或1-2级铵盐溶解在质子系溶剂中时,在高温下会发生酯化和酰胺化,不再呈离子状态,对电导率没有帮助,故不能得到高电导率。又即使溶剂为非质子系溶剂,由于酰胺化,而呈现同样的劣化,不能得到十分良好的特性。
此外如在由甲酸和三乙胺的盐所构成的(特公昭52-45905号公报)那样的羧酸和3级铵盐的场合,在质子溶剂中仍然会发生因酯化而引起的特性劣化。在非质子系溶剂中虽然不会发生如上所述的酯化和酰胺化,但有关电导率方面还不能达到满足最新的电解电容器所要求的特性。
本发明的目的在于通过改进了以前的电解液所存在的上述缺点,得到实质上是非水系的且能提供高电导率的电解液,使电解电容器的电气特性提高,且由于能长时期维持稳定的特性而使电解电容器的可靠性提高。
本发明的特征为在主要溶剂为非质子系溶剂的液体中溶解有脂肪族饱和一元羧酸的4级铵盐。脂肪族饱和一元羧酸以一般式R-COOH(R为氢或碳数为1-6的烷基)表示。将其作为4级铵盐,溶解于以非质子系为主体的溶剂中而得到。
在本发明中所使用的脂肪族饱和一元羧酸的具体化合物(括弧内表示有示性式)如下。
甲酸 (HCO2H)
乙酸 (CH3CO2H)
丙酸 (C2H5CO2H)
丁酸 (C3H7CO2H)
戊酸 (C4H9CO2H)
己酸 (C5H11CO2H)
庚酸 (C6H13CO2H)
在本发明中所使用的脂肪族饱和一元羧酸的4级铵盐在非质子系溶剂中很稳定,能稳定地维持高电导率。
而且即使在质子溶剂中也和以前的铵盐和1-3级铵盐的脱水反应不同,而为脱醇反应。而且此脱醇反应与脱水反应相比,其进行速度显著缓慢,在所期望的电解电容器的寿命特性期间几乎不会出现明显的劣化现象。
能在本发明中使用的溶剂,例如以N-甲基甲酰胺、N-二甲基甲酰胺、N-乙基甲酰胺、N-二乙基甲酰胺、N-甲基乙酰胺、N-二甲基乙酰胺、N-乙基乙酰胺、N-二乙基乙酰胺、γ-丁内酯、N-甲基-2-吡咯烷酮、乙烯碳酸盐、丙烯碳酸盐、二甲基亚砜、乙腈等为首的各种非质子溶剂都可以用。且这些溶剂并不限于只使用一种,使用两种或两种以上的混合物亦可以,再者,如上所述因为即使是质子系溶剂,也没有实质特性的劣化、所以适当混合使用质子溶剂亦行。
以下根据实施例,对本发明作更详细地说明。
首先,作为本发明的实施例,将各种脂肪族饱和一元羧酸的4级铵盐溶解于非质子系的溶剂内,作成电解液,并研究了其电导率。
表1表示本发明的电解液和已有的三乙胺-甲酸系的电解液的电导率的比较情况。
本发明的电解液是在N,N-二甲基甲酰胺中溶解有甲酸的四乙基铵盐,并通过改变溶解的比例来观察电导率的变化的情况。一方面的比较例1则不用溶剂,而只对三乙胺和甲酸两者改变其组成比来进行调整。
表1
![]()
(含量都以重量%表示,电导率则以ms(毫西门子)/cm表示)。
此种比较,由于溶剂不同或溶质的量也不同等原固,而不能作绝对的比较,但如比较一下电导率,则本发明的电解液可以极少的甲酸量得到高电导率,故可以看出本发明的溶质能适用于得到高电导率的目的。
其次,以各种的溶质例调和电解液,除观察其特性外,还将电解液浸渍在电容器元件内研究了电容器的特性。
本发明的电解液的调和方法是将四烷基铵氢化二烯亚硫酸盐溶解于乙酸乙酯和二氯甲烷等的溶剂中,按当量添加所要的一元羧酸。其次添加两倍当量的碱金属氢氧化物,进行反应,除去析出物,其后进行减压干燥即可得到无水盐。再将其溶解在溶剂中,并将其浓度调整到能获得所要求的电导率的浓度。
再者作为以前的例子,和以往一直显示高电导率的己二酸铵-乙二醇系的电解液(比较例2)进行比较。其组成及电导率表示如下。且组成比例都以重量%表示,电导率则以ms(毫西门子)/cm表示。
本发明例2:
(溶质)甲酸四丁基铵 10
![]()
(溶质)γ-丁内酯 90
(电导率) 7.1
本发明例3:
(溶质)乙酸四乙基铵 10
![]()
(溶剂)N,N-二甲基甲酰胺 90
(电导率) 14.1
本发明例4:
(溶质)丙酸四甲基铵 10
![]()
(溶剂)乙腈 90
(电导率) 21.8
本发明例5:
(溶质)丁酸四丁基铵 20
![]()
(溶剂)N-甲基甲酰胺 80
(电导率) 11.2
本发明例6:
(溶质)戊酸四乙基胺 20
![]()
(溶剂)二甲基亚砜 80
(电导率) 9.1
本发明例7:
(溶质)己酸四甲基铵 20
![]()
(溶剂)N-甲基吡咯烷酮 80
(电导率) 7.4
本发明例8:
(溶质)庚酸四甲基铵 20
![]()
(溶剂)丙烯碳酸盐 80
(电导率) 7.2
比较例2:
(溶质)己二酸铵 12
(溶剂)乙二醇 78
水 10
(电导率) 6.7
由以上结果可知,本发明的电解液与已有的电解液相比显示有较高的电导率。
且,在表2中表示有电解电容器的特性比较情况。
制成的电解电容器,用铝箔作为阳极和阴极,中间夹以隔离纸,重叠后卷起,作成圆筒状的电容器元件,再浸渍上各实施例的电解液,装在外壳中并进行密封。
都使用同样的电容器元件,其额定电压为16伏,额定容量为180μF。
在以下的表2中表示这些电解电容器的初值以及在110℃下加上额定电压1000小时后的静电容值(CAP)、损耗角的正切(tanδ),漏电流值(LC)(2组值)。
表2
![]()
从这些实施例中也很明显,由于本发明的电解液的电导率高,因而和已有的相比,损耗即tan δ的值变低。
而且,由于本质上不含水,故即使放置在高温负荷状态下,也不会出现由于内压上升而引起外观异常和静电容量减少等现象,从1000小时后的特性值和初值的比较中也很明显。
如上所述,使用本发明的电解液的电解电容器由于能维持低损耗值,且即使在高温下长时间使用也能维持稳定的特性,因此即使用于有优良频率特性的开关调节器等电源装置和在高温下长期使用的机器等内,也能维持稳定的特性。