静电吸盘的制造方法.pdf

上传人:1*** 文档编号:105999 上传时间:2018-01-25 格式:PDF 页数:16 大小:777.65KB
返回 下载 相关 举报
摘要
申请专利号:

CN200410007630.8

申请日:

2003.02.27

公开号:

CN1525546A

公开日:

2004.09.01

当前法律状态:

终止

有效性:

无权

法律详情:

未缴年费专利权终止IPC(主分类):H01L 21/68申请日:20030227授权公告日:20071024|||授权|||实质审查的生效|||公开

IPC分类号:

H01L21/68; H01L21/302; C25D11/04; B23Q3/154

主分类号:

H01L21/68; H01L21/302; C25D11/04; B23Q3/154

申请人:

株式会社日立高新技术;

发明人:

在働竜二郎; 荒井雅嗣; 角谷匡规

地址:

日本东京都

优先权:

专利代理机构:

中国国际贸易促进委员会专利商标事务所

代理人:

王以平

PDF下载: PDF下载
内容摘要

提供一种具有廉价的、高可靠性的静电吸盘的半导体制造装置。该静电吸盘具有以下特征:由绝缘体基板(6)、在其表面上形成的由铝构成的多个导电薄膜(4a,4b)以及将导电薄膜的表面阳极氧化而形成的钝化铝膜(2a、2b)构成。通过分别向导电薄膜(4a、4b)施加方向相反的直流电压,使该静电吸盘的吸附晶片(7)的面形成为静电双极形式。

权利要求书

1: 一种静电吸盘的制造方法,所述静电吸盘设置在产生等离子 体的真空处理室内,作为被处理材料的晶片被保持在所述静电吸盘的 上面,其特征在于: 上述静电吸盘的吸附上述晶片的面为静电双极的形式,并通过对 铝进行阳极氧化而生成。
2: 根据权利要求1所述的静电吸盘的制造方法,其特征在于: 上述静电吸盘在绝缘体基本材料上形成导电体层,再在其上形成 铝层,并对该铝层阳极氧化。
3: 根据权利要求2所述的静电吸盘的制造方法,其特征在于: 上述静电吸盘的所述基本材料由陶瓷构成。
4: 根据权利要求1所述的静电吸盘的制造方法,其特征在于: 再在上述钝化铝层的表面上形成绝缘薄膜。
5: 根据权利要求4所述的静电吸盘的制造方法,其特征在于: 所述绝缘薄膜是由陶瓷构成的。

说明书


静电吸盘的制造方法

    本申请是申请日为2003年2月27日、申请号为03106729.8、发明名称为“等离子体处理装置及静电吸盘的制造方法”的发明专利申请的分案申请

    【技术领域】

    本发明涉及静电吸盘的制造方法。

    背景技术

    利用钝化铝膜作为静电吸盘的吸附膜的现有的等离子体处理装置采用以下结构:以铝作为静电吸盘的基体材料,通过在其表面进行阳极氧化来形成作为吸附膜的钝化铝膜。(例如,参照特开平5-160076)

    以钝化铝作为吸附膜的静电吸盘,例如与陶瓷烧结体作为吸附膜的静电吸盘比较,具有构造简单、价格低廉、制造时间短等优点。但是相反的,以钝化铝膜作为吸附膜的现有的静电吸盘也存在着2个严重问题。其一是由于设计的自由度低,容易形成单极型的静电吸盘,而形成双极型的静电吸盘则比较困难。另一个问题是经常会发生钝化铝膜的电子或机械完整性降低地情况。

    关于前一个问题,由于在等离子体中使用单极型静电吸盘的情况下,等离子体作为导体作用而产生吸附力,所以在等离子体处理中因某种原因而造成等离子体消失的情况下,吸附力也随之消失,就无法吸附晶片了。但是,为了促进静电吸盘和晶片之间的热传导,很多时候都在晶片和静电吸盘的微小间隙中充填氦等气体。在这种晶片背面有气压负荷的状态下,吸附力一消失,晶片就被气压推动从静电吸盘上脱离,会产生晶片的位置偏离,甚至会发生晶片破损等问题。这个问题,对于无论有无等离子体都能产生吸附力的双极型静电吸盘来说是不会发生的。所以,能够提高设计自由度来制造双极型电极是一项非常重要的课题。

    另一方面关于后一个问题,在静电吸盘的吸附膜内存在裂缝和剥离等缺陷的情况下,就会产生耐电压性能下降和吸附膜脱离等问题。特别是钝化铝膜在成膜时内部存在微小的裂缝的情况很多,由于以这个裂缝为基础,在较低的应力下裂缝就有可能扩大,所有就应该极力避免在钝化铝膜上产生拉伸应力负荷的构造。但是,在以热膨胀率比较大的铝为基体材料,以热膨胀率较小的钝化铝膜作为吸附膜的情况下,由于基体材料和吸附膜的热膨胀率的差异很大,所以在温度变化的时候就会在基体材料和吸附膜的界面附近产生很大的热应力。特别在升温的时候,由于在吸附膜侧有拉伸应力负荷,所以就会产生造成吸附膜裂缝并使之扩大的问题。所以,抑制由于这个热应力产生的裂缝并抑制扩大也是非常重要的课题。

    【发明内容】

    本发明就是考虑到这样的课题而提出的。本发明的目的是提供一种静电吸盘的制造方法,以便提供便宜、容易使用的,或可靠性高的静电吸盘。

    上述课题可以通过本发明的静电吸盘的制造方法来完成。

    根据本发明的静电吸盘的制造方法,所述静电吸盘设置在产生等离子体的真空处理室内,作为被处理材料的晶片被保持在所述静电吸盘的上面,其特征在于:上述静电吸盘的吸附上述晶片的面为静电双极的形式,并通过对铝进行阳极氧化而生成。

    根据本发明,上述静电吸盘在绝缘体基本材料上形成导电体层,再在其上形成铝层,并对该铝层阳极氧化。

    根据本发明,上述静电吸盘的所述基本材料由陶瓷构成。

    根据本发明,再在上述钝化铝层的表面上形成绝缘薄膜。

    根据本发明,所述绝缘薄膜是由陶瓷构成的。

    【附图说明】

    图1是相关于本发明的一个实施例的静电吸盘的斜视图及截面图。

    图2是相关于本发明的一个实施例的蚀刻装置的截面图。

    图3是说明相关于本发明的一个实施例的静电吸盘的制造方法的截面图。

    图4是相关于本发明的另一个实施例的静电吸盘的截面图。

    图5是相关于本发明的另一个实施例的静电吸盘的截面图。

    图6是相关于本发明的一个实施例的静电吸盘的斜视图。

    【具体实施方式】

    如上所述,对于等离子体一消失吸附力也消失了的问题,把静电吸盘作成双极型能够解决。这是因为,双极型静电吸盘无论等离子体是否存在都产生吸附力,所以等离子体即使消失仍然能保持其吸附力。但是,现有的方法,即单一的对铝基体材料实施阳极氧化处理的方法,不能形成双极型的静电吸盘。这是因为,即使要在吸附面形成双极,吸附面下面的铝基体材料也会形成单极。所以,本发明的实施例是在绝缘性基体材料上,各自形成电绝缘的多个铝膜,通过对这些铝膜进行阳极氧化而形成双极型静电吸盘。

    另一方面,钝化铝膜的电子或机械性能低下的问题,可以通过使用例如陶瓷作为上述的绝缘性基体材料来解决。这是因为在基体材料的热膨胀率与钝化铝的热膨胀率相等的情况下,由于温度变化时的体积膨胀及收缩在静电吸盘整体能是均匀的,所以就能抑制在钝化铝和铝的界面旁边产生很大的热应力。另外,通过在钝化铝膜的表面上再形成绝缘的被膜,例如陶瓷性的保护膜,可以进一步提高吸附膜的可靠性。

    以下,用附图详细说明本发明的实施例。

    图1是说明本发明的半导体处理装置的第一个实施例的装载晶片的样品台的结构概要的截面图。图1中表示其切断模型的静电吸盘1被主要用来吸附晶片7和对其进行加工等的目的。以下对本发明的静电吸盘的构造及使用方法进行说明。

    本发明的静电吸盘1的基本结构部分有基体材料6、导电薄膜4a及4b、钝化铝膜2a及2b、供电布线5a及5b。基体材料6为绝缘体,在它上面夹着导电薄膜4a及4b形成钝化铝膜2a及2b。在基体材料6的内部,贯穿基体材料6形成导电的供电布线5a及5b,供电布线5a及5b的一端各自与导电薄膜4a及4b连接。供电布线5a及5b的另一端与用于静电吸附的直流电源连接,能够独立地向导电薄膜4a及4b提供电位。

    下面,说明在本实施例中静电吸盘1吸附晶片7的步骤。首先,利用图中未示出的晶片传送装置,在要传送的晶片7的四周与静电吸盘1的四周到达大体一致的位置后,将其装载到静电吸盘1上。接着,如图1(b)所示,通过供电布线5a及5b分别向导电薄膜4a及4b提供极性相反的电位。例如,若分别向导电薄膜4a提供正电荷,向导电薄膜4b提供负电荷,如图1(b)所示,晶片7的表面的电荷移动,导电薄膜4a及4b与晶片7表面的正负电荷各自产生吸引力,即通过库仑力使晶片7吸附在静电吸盘1上。

    在通过以上的步骤将晶片7吸附在静电吸盘1上的状态下,对晶片7实施所需要的等离子体处理。在等离子体处理结束后从静电吸盘1上除去晶片7的时候,施加在导电薄膜4a及4b上的电位返回到0附近,就可以使晶片表面的电荷分布平均化即可。

    另外,在向导电薄膜4a及4b提供极性相同、大小相等的电位的情况下,原样保持是不会产生吸附力的,但通过使晶片的电位和导电薄膜4a极4b的电位差变大而产生库仑力,则有可能使之吸附。

    下面,作为等离子体处理的一个例子,以半导体制造中的主要步骤之一的蚀刻步骤为例,对本发明的等离子体处理装置的实施例进行说明。

    图2表示的是本实施例使用的蚀刻装置的概要。在图2中,处理室R是真空压力能够达到约10000分之一1Pa的真空容器,在它的上部设置有发射电磁波的天线110、下部设置有装载晶片等样品700的静电吸盘100。天线110和静电吸盘100被平行、相对地设置。在处理室R的周围,设置有由例如线圈和偏转线圈组成的磁场形成装置101。通过天线110发出的电磁波和磁场形成装置101形成的磁场的相互作用,将导入处理室内部的处理气体等离子体化而产生等离子体P,来处理样品700。

    处理室R通过真空排气系统106进行真空排气,通过压力控制装置107控制压力。处理压力被调整到0.1Pa以上10Pa以下的范围内。天线110被作为真空容器的一部分设置在外罩114中。进行样品的蚀刻、成膜等处理的处理气体,由图中未示出的气体供给装置以规定的流量和混合比例进行供给,并以规定的分布进行控制,向处理室供给。

    作为天线电源120的天线电源121、天线偏压电源122各自通过耦合电路·滤波系统123、124被连接到天线110上,另外通过滤波器125被连接到地线上。天线电源121以300MHz到1GHz的UHF段频率提供电力。在本实施例中,天线电源121的频率为450MHz。天线偏压电源122向天线110施加数十kHz到数十MHz范围频率的偏压电源。在本实施例中这个频率为13.56MHz。

    在处理室R的下部,静电吸盘100被面对着天线110设置。供给例如从200kHz到13.56MHz范围偏压的偏压电源141通过耦合电路过滤系统142被连接到静电吸盘100上,控制施加到样品700上的偏压,同时通过过滤器143被连接到地线上。在本实施例中,偏压电源141的频率为400kHz。

    如上面所述,在静电吸盘100的上面,即样品装载面上装载放置着晶片等样品700。使用本实施例所示的等离子体蚀刻装置对晶片700实施蚀刻的时候,通过由静电吸附用的直流电源144和过滤器145施加数百伏特~数千伏特的直流电压,来产生库仑力。另外,静电吸盘100通过图中未示出的温度控制装置将其表面控制在规定的温度。通过向静电吸盘100的表面和晶片700的背面之间的间隙,以规定的流量和压力供给惰性气体,例如氦气,提高其与样品700之间的热传道。由此,就能够将样品700的表面温度精确地控制在例如大约20℃~110℃的范围内。

    本实施例的等离子体蚀刻装置如以上那样的结构。用这个等离子体蚀刻装置来说明例如对硅进行蚀刻工艺时的具体过程。

    在图2中,首先在把作为处理对象的晶片700从图中未示出的样品传送机构传送到处理室R后,将其装载、吸附到静电吸盘100上,根据需要调整静电吸盘的100的高度,把晶片700设置在规定的间隙中。然后,通过图中未示出的气体供给装置供给样品700的蚀刻处理必需的气体,例如氯和氢化溴和氧,并以规定的流量和混合比例向处理室R内供给。同时,处理室R通过真空排气系统106及压力控制装置107将压力调整到规定的处理压力。接着,通过从天线电源121提供的450MHz的电力,而使电磁波从天线110发出。然后,通过与利用磁场形成装置101在处理室R内部形成的大约160高斯(对应于450MHz的电子回旋共振磁场强度)水平的磁场相互作用,而在处理室R内生成等离子体P,离解处理气体,产生离子和原子团。还通过由天线偏压电源122提供的天线偏压电力和由下部电极的偏压电源141提供的偏压电力,控制等离子体中的离子、原子团的组成比例和能量,对晶片700进行蚀刻处理。然后,伴随着蚀刻处理的结束,停止供给电力、磁场及处理气体,蚀刻结束。

    下面说明蚀刻结束后晶片700的运出方法。如前所述,为了使晶片和静电吸盘之间的吸附力变小,中断在施加在图1中的导电薄膜4a及4b上的直流电压,使导电薄膜4a和4b之间的电位差变小就可以了。即,通过使导电薄膜4a和4b间的电位差实质上变为0,而将晶片700从钝化铝层2a及2b上剥离下来。之后,使用图中未示出的传送机构将剥离下来的晶片700传送到下一步工序。

    但是,在导电薄膜4a及4b间的电位差实质上为0的时候,也有晶片吸附力仍然残留,而不容易剥离的情况。在晶片700具有良好的导电性的情况下,其原因是积累在钝化铝层2a及2b上的电荷没有被中和。不将晶片700和静电吸盘间的吸附力减小到非常小,而用晶片剥离机构强制地将晶片剥离下来的情况下,恐怕会在晶片被剥离的瞬间发生弹出的现象。这时,通过向导电薄膜4a及4b施加与吸附时相反极性的电压,就能够中和积累的电荷,由此,以后就能够回避因使用晶片剥离机构而产生的危险了。

    下面,详细说明涉及本发明的静电吸盘制造方法的实施例。在本实施例中,首先如图3(a)所示,在基体材料6的规定位置上以贯通基体材料6的形式设置并固定供电布线5a及5b,将其与基体材料6的贯通孔的开口部分之间加工成没有空隙后,将基体材料6的表面和供电布线5a及5b的边缘加工成一个平面。在本实施例中,基体材料6的材料为氧化铝,但其他的绝缘材料,例如氮化铝和碳化硅等的陶瓷、石英等也能达到本发明的目的。另外,供电布线5a及5b的材料为钨,但其他的导电材料也能达到本发明的目的。

    下面,如图3(b)所示,在基体材料6上以希望的形状形成导电薄膜4a及4b。在本实施例中,是将钼-锰合金烧制成导电薄膜4a及4b的材料的,而其他的导电薄膜,例如各种金属的喷镀膜和电镀膜也可以达到本发明的目的。在导电薄膜4a及4b上,各自以电气接触的形式配置有供电布线5a及5b。

    如图3(c)所示,在导电薄膜4a及4b上,形成铝层9a及9b,并形成一个平面。在本实施例中,形成这个铝层的方法是焊接,而其他方法例如喷镀、镀、焊接、压接等方法也能达到本发明的目的。

    铝层9a及9b的厚度约为100微米。铝层9a及9b的平面形状如图1所示为同心圆和环状也可以,2个半圆也可以。而所谓的梳齿状,则会对粗加工玻璃这样的绝缘体产生吸附力。进一步,将铝层9a及9b的表面加工为中心线平均粗0.2微米以下。再对铝层的角部进行倒角。这个倒角对于防止在后面的钝化铝处理之后,在钝化铝膜的角部产生裂开非常重要。铝层角部的形状,除了这样的倒角以外,例如圆弧状也可以。

    下面,如图3(d)所示,在铝层9a及9b的表面实施钝化铝处理。在草酸溶液中通过供电布线5a及5b向铝层9a、9b施加电压来使钝化铝膜成长。在图3(d)中在钝化铝膜10a及10b的厚度到达50微米的时候膜生成就完成了。但是,在这样形成的钝化铝膜10a及10b的内部残存着膜厚度方向的细微裂开,因此通过将形成的钝化铝薄膜曝露在高温水蒸汽中,来封闭钝化铝膜10a及10b内部形成的细微裂开。

    图4所示的是用以上方法制作的静电吸盘的截面的简图。将硅晶片7装载在用这种方法制作的静电吸盘1上,向供电布线5a及5b各自施加+500V及-500V的直流电压,晶片7就被吸附在静电吸盘上了。已确认,由晶片7在与静电吸盘1的吸附面垂直的方向上的拉伸负荷,产生了4kPa以上的吸附力。由以上可以确认,通过本实施例所记载的方法,能够制作具有良好吸附性能的双极型静电吸盘。

    实施例3

    以下,详细说明涉及本发明的静电吸盘的另一个实施例。图5表示的是本实施例的静电吸盘的模型。在本实施例中,如图5所示在钝化铝膜2a及2b的表面上再形成绝缘薄膜10。其理由及效果如下。即如实施例2所述,一般钝化铝膜都一定存在细微的裂开。所以,要想在形成钝化铝膜的时候,使膜中的裂开完全没有是非常困难的。但是,在膜中存在裂开,钝化铝膜即吸附膜的耐电压能力就变低,就有可能对静电吸盘的性能产生损害。

    为了提高钝化铝膜的耐电压能力,在实施例2中,在膜形成后将钝化铝膜2a及2b曝露在水蒸汽中进行封孔处理。这个处理简单,且确有效果。根据场合不同其效果不充分的情况也有。因此,如本实施例所示,通过在钝化铝膜表面形成绝缘保护膜,来进一步提高吸附膜的耐电压能力,特别能使因绝缘被破坏而引起的不合格减少,或者通过向供电布线5a及5b施加更高的电压,也能够得到更大的吸附力。或在长时间使用的情况下,提高循环升降温情况下的可靠性。

    另外,在本实施例中,使用氧化铝的CVD(化学蒸汽淀积)膜作为绝缘薄膜,膜厚度为5微米。通过这个CVD处理,使吸附膜的平均耐电压能力提高到了约3kV到约5kV。另一方面,通过这个CVD处理,吸附力几乎没有变化。通过以上探讨,在钝化铝膜的表面形成绝缘薄膜,对于提高本静电吸盘的可靠性有很好的效果。

    实施例4

    为了提高晶片和吸附膜之间的热传导率而调整晶片的温度,有时有必要在晶片和吸附膜之间填充规定压力的氦等气体。为了对此进行对应,如图6所示,在吸附膜表面上加工沟G,同时将吸附面设置为规定的粗细,能够减小晶片和吸附膜之间的气体压力的偏差。在这种情况,有必要在静电吸盘的最外边缘部分设计防止从晶片反面向真空容器内泄漏气体的密封构造。在本实施例中,如图6所示,是不使吸附膜表面的沟贯穿外边缘的构造。

    为了实现这样的构造,可以使氧化铝膜形成为能够抑制从最外边缘泄漏气体的希望的形状,以在图3中的铝层9a及9b的形状预先作为适合的形状就可以。

    另外,如上所述的实施例1乃至4,至少是本发明的实施形式的例子,当然,这些实施例并不是对本发明的静电吸盘及装置的限制。

    通过本发明,能够制造便宜的、耐电压等高可靠性的、容易使用的双极型静电吸盘,由此能够提供使用时具有高自由度的等离子体装置。

静电吸盘的制造方法.pdf_第1页
第1页 / 共16页
静电吸盘的制造方法.pdf_第2页
第2页 / 共16页
静电吸盘的制造方法.pdf_第3页
第3页 / 共16页
点击查看更多>>
资源描述

《静电吸盘的制造方法.pdf》由会员分享,可在线阅读,更多相关《静电吸盘的制造方法.pdf(16页珍藏版)》请在专利查询网上搜索。

提供一种具有廉价的、高可靠性的静电吸盘的半导体制造装置。该静电吸盘具有以下特征:由绝缘体基板(6)、在其表面上形成的由铝构成的多个导电薄膜(4a,4b)以及将导电薄膜的表面阳极氧化而形成的钝化铝膜(2a、2b)构成。通过分别向导电薄膜(4a、4b)施加方向相反的直流电压,使该静电吸盘的吸附晶片(7)的面形成为静电双极形式。 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 基本电气元件


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1