提高二氧化碳回收率的方法和设备.pdf

上传人:e2 文档编号:1054710 上传时间:2018-03-28 格式:PDF 页数:12 大小:521.17KB
返回 下载 相关 举报
摘要
申请专利号:

CN99121303.3

申请日:

1999.10.10

公开号:

CN1255618A

公开日:

2000.06.07

当前法律状态:

终止

有效性:

无权

法律详情:

专利权的终止(未缴年费专利权终止)授权公告日:2003.10.8|||授权|||实质审查的生效|||专利申请权、专利权的转移(专利申请权的转移)变更项目:申请人变更前权利人:普拉塞尔技术有限公司变更后权利人:普莱克斯技术有限公司登记生效日:2001.8.24|||公开

IPC分类号:

F25J3/02

主分类号:

F25J3/02

申请人:

普拉塞尔技术有限公司;

发明人:

H·E·霍瓦德; C·B·卡普洛

地址:

美国康涅狄格州

优先权:

1998.10.13 US 09/170012

专利代理机构:

中国专利代理(香港)有限公司

代理人:

魏金玺;周慧敏

PDF下载: PDF下载
内容摘要

一种由二氧化碳进料生产基本上是纯二氧化碳的方法和设备,二氧化碳进料包含约80%至约95%(体积)的二氧化碳。

权利要求书

1: 一种由二氧化碳进料生产基本上是纯二氧化碳的方法,二氧 化碳进料包含约80%至约98%(体积)的二氧化碳,所述的方法包 括: a)在蒸馏塔中蒸馏二氧化碳进料,从而制成一种包含基本上是 纯二氧化碳的液态产品,和一个包含二氧化碳的塔顶蒸气流; b)在压缩装置中压缩塔顶蒸气流,制成压缩气流,塔顶蒸气流 被压缩到足以使包含在其中的大部分二氧化碳能被冷凝的压力; c)将压缩气流在热交换器中冷却成冷却的气流,以冷却和部分 冷凝压缩气流; d)使冷却的气流在相分离器中进行相分离,分离成冷凝液和残 余蒸气;和 e)将冷凝液返回到蒸馏塔中,在所述的蒸馏步骤中进一步蒸 馏。
2: 权利要求1的方法,还包括在至少一个热交换器中加热从相 分离器中排出的残余蒸气。
3: 权利要求2的方法,还包括将在所述的加热步骤中加热的残 余蒸气加入涡轮膨胀机,并在涡轮膨胀机中膨胀被加热的残余蒸气, 以产生轴功。
4: 权利要求3的方法,还包括将涡轮膨胀机所产生的轴功输入 压缩装置,以供在所述的压缩步骤中压缩塔顶蒸气流。
5: 权利要求1的方法,其中所述的冷却步骤包括利用由一个单 独的致冷系统提供的中等压力/已冷却的制冷剂,在热交换器中冷却 压缩气流。
6: 权利要求1的方法,还包括在蒸馏二氧化碳进料之前,压缩 二氧化碳进料,干燥压缩的进料和冷却干燥的进料。
7: 一种由二氧化碳进料生产基本上是纯二氧化碳的设备,二氧 化碳进料包含约80%至约98%(体积)的二氧化碳,所述的设备包 括: a)蒸馏塔,用于蒸馏二氧化碳进料,从而制成一种包含基本上 是纯二氧化碳的液态产品,和一个包含二氧化碳的塔顶蒸气流; b)压缩装置,用于压缩塔顶蒸气流,制成压缩气流,将塔顶蒸 气流压缩到足以使包含在其中的大部分二氧化碳被冷凝的压力; c)热交换器,用于冷却压缩气流,将压缩气流冷却并部分冷凝 成冷却的气流; d)相分离器,用于使冷却的气流进行相分离,分离成冷凝液和 残余蒸气;和 e)返回管线,用于将冷凝液返回到所述的蒸馏塔中进一步蒸 馏。
8: 权利要求7的设备,还包括至少一个热交换器,用于加热从 相分离器排出的残余蒸气。
9: 权利要求8的设备,还包括涡轮膨胀机,用于接受被加热的 残余蒸气,并用于使被加热的残余蒸气膨胀产生轴功。
10: 权利要求9的设备,还包括将所述涡轮膨胀机与所述压缩装 置连接的轴,用于将涡轮膨胀机产生的轴功输入压缩装置,以供压缩 塔顶蒸气流。

说明书


提高二氧化碳回收率的方法和设备

    本发明一般地涉及提高常规的液化和蒸馏设备的二氧化碳回收率,更具体而言,涉及在冷凝和残余排气膨胀之前,采用二氧化碳排气压缩机增加排气压力来提高二氧化碳液化装置蒸馏塔的二氧化碳回收率。

    二氧化碳通常是作为气体副产物从生产氨或氢以及从发酵车间获得的。人们已经知道采用蒸馏方法将气体副产物转化成纯的液态二氧化碳,回收率达94%(重量)以上。

    生产液态二氧化碳采用的常规蒸馏塔一般在压力约260psia下操作,塔的冷凝器温度为约-25°F。在这些条件下,作为塔顶气流从塔顶排出的废气含约75%(体积)的二氧化碳。因此,作为废气损失的二氧化碳量约为进料中杂质含量的三倍。因此推断,二氧化碳的回收率随进料中二氧化碳浓度的降低而明显地下降。

    普通的高纯度(例如按干基计算,二氧化碳超过98%)二氧化碳原料有效利用率低,迫使人们致力于技术的开发和设备的改进,以有效地回收和液化包含含量基本上较高的不能冷凝的杂质的气流。在二氧化碳液化设备的进料气流中存在大量的轻污染物时,由于进料/排气气流地露点抑制/降低,能有效地冷凝和纯化的二氧化碳量下降。美国专利4,639,257(′257专利)的图1和2用图解方式表示出这种露点抑制效应,其中如果气体混合物包含的二氧化碳浓度低于该混合物在冰点温度下的平衡浓度,就不能通过冷却和部分冷凝或冷却和蒸馏方法分离二氧化碳,因为二氧化碳在形成液体之前会结冰。在这种情况下,简单地降低致冷剂(例如氨)的初始冷凝温度来提高二氧化碳的回收率,往往会造成所不希望的设备复杂化和热力学性能不起作用。由于这些困难,改革二氧化碳的致冷装置仍不能触及包含在高压/残余二氧化碳气流中损失的功。

    为了解决上述的问题进行过许多尝试。为了减少二氧化碳设备塔顶排气流中二氧化碳的损失,最早和最直接的方法是简单地降低排气流的冷凝温度。随着排气温度的降低,增加了冷凝和回收的二氧化碳份额。为了产生较低的排气冷凝温度,必须采用在低于常压下进行低温冷凝作业的致冷剂例如二氧化碳或氨。然而,由于氨饱和温度的热力学限度这一内在原因,提高塔的压力往往是唯一可利用的工艺变量,动力最大可使压力达到最高。但伴随塔压力的提高,工艺排气的压能损失也大幅度增加。尽管这些方案有它们的缺点,然而在工业上却一直采用它们,它们基本上是工业上提高现有设备二氧化碳回收率的标准方法。

    最近推荐的一些方法,利用膜和/或吸附设备提高了从排气流中回收二氧化碳的回收率。在膜设备中,二氧化碳排气流经过膜优先扩散二氧化碳。然后将透过的气流/富集二氧化碳的气流重新加入进料压缩系统,返回的二氧化碳在该系统中被冷凝和回收。在′257专利以及美国专利4,602,477和4,936,887中公开了这种混合的膜方法。与此相似,有人推荐一些用于同样目的的吸附系统。在这些设备中,二氧化碳优先吸附到吸附剂上。然后使吸附容器减压,和/或抽取富集二氧化碳的脱吸气流,重新加入进料压缩和冷凝系统。在变压吸附设备中处理来自蒸馏塔的废气流,生产高度浓缩的二氧化碳气流,将其返回到二氧化碳进料中。美国专利4,952,223提供一个变压吸附(PSA)排气处理设备的实例,采用该设备由低浓度二氧化碳进料,特别是二氧化碳浓度为约35%至约98%(体积)的进料,生产纯的液态二氧化碳。

    正如所指出的,有许多种复合方法能够通过扩散(膜)和/或吸附(PSA/VPSA)提高排气的二氧化碳回收率。一般说来,这些方法在操作和所需设备两个方面与本发明基本上不同。这些复合方法与本发明的性能的比较表明,这些设备具有几个附带的缺点。用于增加排气二氧化碳含量的膜和变压吸附设备的性能比通过在本发明中的部分冷凝和/或蒸馏所达到的性能差。更重要的是,膜和变压吸附设备不能减少残余排气流的压能损失。而且,膜和变压吸附设备也都是牺牲排气的压能。实际上,这两种方法基本上降低了富集的循环二氧化碳流(提余气体/脱吸气体)的压力。而且,由于循环气流的压力较低,这二种复合方法都必须另外安装循环压缩机或增加递增进料压缩机的尺寸。

    为减少排气损失而推荐的另一种方法,并非不将注意力集中在提高二氧化碳的回收上。不同的是,这种方法回收包含在二氧化碳排气流中的压能。大多数二氧化碳液化/蒸馏设备基本上都在超常压(例如超过约20atm)下操作。因此任何不能冷凝和未冷凝的二氧化碳实际上以同样的压力排出蒸馏/冷凝过程。一般不打算或不准备回收包含在排气中的压能。然而,随着污染物含量的增加,排气的流量和损失的压能也增加。回收这部分压能的最直接的方法,是利用辅助的涡轮机膨胀作用。实际上,排气流先被加热,然后膨胀,并同时回收膨胀所作的主轴功。美国专利4,977,745(′745专利)公开了一种这样的设备。

    概括地说,过去减少二氧化碳排气损失的尝试主要集中在(i)提高二氧化碳的回收率或(ii)提高排气压能的回收率。

    本发明用于同时提高二氧化碳的回收率和排气压力的回收率。对此,本发明特别关注残余排气流在不同情况下的最大压能损失。本发明对处理包含5%以上的轻污染物(例如N2、O2、Ar、CH4、H2和CO)的二氧化碳排气流的液化和蒸馏设备特别有效。

    对于采用二氧化碳减压或真空氨的常规强化低温冷凝方法,本发明提供另一个提高二氧化碳回收率的方案。这些以前的方法使排气流在排出塔之后(或在排气预冷凝之后)直接进行冷凝。实际上保持排气的压力为塔的压力。不同的是,本发明将排气流压缩到超过塔内的压力。排气压力的这一增加使排气流的露点升高。对于任何给定的温度,这都使包含在排气中的二氧化碳有更大一部分被冷凝。因此,本发明的产品回收率自然高于这些过去的方法。

    所强调的排气后膨胀方法能有效地回收排气流的压能。然而,膨胀气流不作为低压废气排放,其中所含的二氧化碳量往往足以保证二氧化碳的回收率。此外,本发明优选的实施方案,在残余排气后膨胀之前,通过排气压缩,从而再次进行二氧化碳的冷凝/回收,提高二氧化碳的回收率。本发明与′745专利中的设备之间的主要不同在于,在本发明中,在膨胀和冷凝之前先压缩排气,而不是从前面所公开的分离过程直接膨胀。

    一般说来,在本发明中首先压缩在液化过程中从二氧化碳蒸馏塔排出的排气流来提高压力。然后使被压缩的排气流与沸腾的制冷剂液体逆流进行热交换,发生部分冷凝。使部分液化的排气流进行相分离,液体部分返回到蒸馏塔中进行回收,残余的排气流经过至少一级涡轮机膨胀,产生有用的轴功。本发明还提供一种由二氧化碳进料生产基本上是纯的二氧化碳的方法和设备,当气体加入设备时,二氧化碳进料包含约80%至约98%(体积)的二氧化碳,当气体送入排气时,其中包含约80%至约50%(体积)的二氧化碳。在蒸馏塔中蒸馏二氧化碳进料,从而制成包含基本上是纯二氧化碳的液态产物,和一个包含二氧化碳的塔顶蒸气流,在压缩装置压缩塔顶蒸气流,形成一个压缩气流,塔顶蒸气流被压缩到足以使包含在其中的大部分二氧化碳被冷凝的压力。在热交换器中将压缩气流冷却成冷却的气流,以冷却和部分冷凝压缩气流。冷却的气流在相分离器中进行相分离,分离成冷凝液和残余蒸气。冷凝液返回到蒸馏塔中进一步蒸馏。

    在优选的实施方案中,热交换步骤包括至少一级冷凝和相分离。分离出来的液体返回到蒸馏塔进一步纯化和回收,排气流中残余的气体部分随后被加热并进行涡轮机膨胀。采用另一种方案,在直接进行涡轮机膨胀之前,热交换步骤可由至少一级加热的热交换组成。在另一个优选的实施方案中,膨胀产生的轴功为排气的压缩提供必要的能量。

    可将塔顶蒸气流压缩到压力约350psia至约900psia。也可利用由一个独立的致冷系统提供的中等压力/冷却的制冷剂在热交换器中冷却压缩气流。可将压缩气流冷却到约-25°F至约-65°F。

    可在蒸馏塔蒸馏之前,压缩、干燥和冷却二氧化碳进料。在这一步可将干燥的进料冷却到接近其在塔的再沸器中的露点。在蒸馏塔中蒸馏之前,冷却干燥的进料接着与低压致冷剂逆流在冷凝器中基本上冷凝。冷凝器中的低压致冷剂可由单独的致冷系统提供。

    在蒸馏塔中的蒸馏可在温度约-10°F至约-50°F和压力约260psia至约340psia下进行。

    在一般情况下,采用本发明的概念,二氧化碳的回收率可超过约95%(重量)。

    该图用流程示意图表示出本发明的一个优选的实施方案,用于提高二氧化碳液化和蒸馏设备二氧化碳的回收率。

    该图用流程示意图描绘了本发明优选的实施方案。为了阐明方便起见,列举常规单塔二氧化碳蒸馏设备以及附带的二级致冷设备来说明本发明。当然,本领域的普通技术人员都会认识到,本发明并不限于这个具体的设备。

    图中原料气5基本上包含约80%至约98%的二氧化碳,少量(不低于约5%)的低沸点污染物(例如N2、O2、Ar、H2、CO和CH4)和水分,使其在压缩机10中从大气压附近压缩到约60psia至约90psia。然后使压缩气流在热交换器20和水冷却的热交换器21中相继冷却到温度约80°F至约100°F。在相分离器/容器30中分离并排出冷凝的水分。干燥的进料气流一般用压缩机40进一步压缩,使压力升高到约280psia至至少约325psia。在压缩机40中压缩后,进料气流与冷却水和冷却的致冷剂相继在热交换器50和60中逆流冷却到温度约35°F至约45°F。进料气流在分离容器70中又分离出冷凝的水分。采用吸附系统80进一步干燥干燥的气流。作为实例,吸附系统80可以是氧化铝吸附床。虽然没有示出,但也可采用碳吸附床与沸点较高的烃类接触。

    然后将清洁干燥的进料气流进一步冷却到接近其在塔的再沸器90中的露点。这一温度为约0°F至约10°F,取决于气流的组成。然后使进料气流在初级冷凝器100中与低压致冷剂逆流基本上冷凝。然后使进料气流通过阀门110在靠近蒸馏塔120顶部的一点泻入塔内,用作初始进料。在塔120内从液体中洗提二氧化碳。塔120在温度约-25°F至约-5°F和压力约270psia至约320psia下操作。以线121表示从塔120底部收集的基本上是纯的液态二氧化碳。以线122表示的该液流的一部分在塔的再沸器90中部分蒸发,如此产生的蒸气用作塔120的洗提蒸气。

    以线123表示的液态二氧化碳的其余部分,在热交换器130内与低压致冷剂逆流过冷到温度约-25°F至约-15°F,并通过阀门140泻出贮存。

    参照致冷系统,该系统一般用参考序号300表示,可以将许多不同的致冷剂供给上述的冷却和冷凝作业。可以采用的可能的致冷剂有R22(一氯二氟甲烷)、R717(氨)和R290(丙烷)。当需要时,也可采用具有所需热力学性质的其它致冷剂。低温气体致冷剂优选氨,在压缩机150内从低压压缩到约70psia至约85psia,并加入直接接触式二次冷却器160中。以线161从二次冷却器160的顶部抽取中等压力气态的致冷剂,在压缩机170内进一步压缩到压力约200psia至约220psia。然后在热交换器180内基本上冷凝高压致冷剂,热交换器180可用水、强制空气等冷却。液化的致冷剂然后通过阀门190减压到压力约70psia至约85psia,并作为致冷剂加入直接接触式二次冷却器160中。

    在压力为约70psia至约85psia下,以线162从二次冷却器160的底部抽取中等压力/冷却的致冷剂液流。采用以线163表示的该液流的一部分在热交换器60内冷却进料气流。分出以线164表示的该液流的另一部分,通过阀门200进一步减压到压力为约14psia至约20psia。以线166表示的该压缩液流的一部分在初级进料冷凝器100内吸收冷凝热,以线168表示的部分用于热交换器130的产品过冷作业。以线165表示的另一部分,用于冷凝蒸馏塔120的一部分塔顶排气流,下面将非常详细地叙述蒸馏塔120。将蒸气化的低压气流重新合并,并在上述的致冷系统300的压缩机150内压缩。

    从塔120排出的塔顶蒸气124,用压缩机210压缩到足以使其所含的大部分二氧化碳在热交换器220内被冷凝的压力。这一压力超过塔的压力,为约350至约900psia。以线125表示的压缩气流在热交换器220内部分冷凝。以线126表示的部分冷凝的气流在容器230内进行相分离。以线231表示的冷凝液随后通过阀门240泻出,返回到塔120的上部。以线232表示的从相分离器230排出的残余蒸气流过热交换器20而被加热,如果需要,由废气热交换器250将其提高到适合在涡轮膨胀机260内膨胀的温度。这一温度为约160°F至约350°F。可将涡轮膨胀机260产生的轴功通过轴/心轴270直接输入压缩机210内的压缩装置。

    本发明的目的是提供一种由典型的二氧化碳装置的排气流提高二氧化碳产量的方法。本发明不限于图中所示的具体配置。

    如上所述,在用压缩机210压缩排气之后,可利用冷凝步骤进一步从排气流中冷凝出二氧化碳。选择这个基本步骤不仅包括采用多种致冷剂(例如氨和二氧化碳),而且还包括采用多种致冷程度。进行这一冷凝步骤(或进行这些冷凝步骤)的压力是不定的,不必完全受涡轮膨胀机260所得轴功的限制。

    也可在压缩机210内加入一个独立的由外部供给动力的压缩装置,以进一步冷凝二氧化碳。如有必要,可将压缩的热量排入另一个热交换器(就在热交换器220之前),以降低低温致冷剂的冷凝负荷。

    作为另一个方案,塔120的液体进料流(即分别通过阀门110和240的液流),如果它们的温度差别很大,不必加到塔的同一位置。在这样的配置中,作为实例,可在两个进料位置之间放另一段塔隔开。

    应当注意,虽然图中没有示出,但许多装置都有固定到塔120顶部的整体回流冷凝器。实际上,已经进行排气的直接冷凝(在塔的压力下)。本发明也可应用于这种类型的配置,因为本发明可应用于从塔120或从现有的排气冷凝器排出的排气流。本发明会得到较大的二氧化碳产品产量,而与结构形式无关。

    可将从残余排气涡轮膨胀机260得到的轴功直接耦合到压缩装置210上(如图中所示),耦合到发电机上生产电力或简单地消耗在制动流体中。膨胀机的进料流不需按图中所示的方式进行加热。相反却可采用任何可利用的压缩或工艺加热介质/流提高膨胀入口温度来增加所得的轴功。

    基本上较高的顶部压力与直接利用膨胀能轴功相结合的协同效应,产生一个动力消耗非常低的方法。除了降低动力消耗以外,由于包括冷凝器/分离器,本发明能大幅度地提高二氧化碳的产量。实际上,这种复合方法提高了这两部分组成的效率。

    该图示出一个任选的废气热交换器250。当然,这是假定可以利用外来的废热。为了应用本发明,这种情况是不一定需要的。此外,涡轮膨胀机260可由顺序的多级膨胀组成,以便从气流中汲取出尽可能多的能量。在这种配置中,排气流被重新加热和膨胀几次。

    为了讨论起见,该图示出柱塞/往复式压缩机和逆流热交换器。这些组成部分不限于这些具体的类型。相反地还可采用其它类型例如干/油螺旋压缩机或离心涡轮机代替所示的压缩机。同样,热交换器可以是壳管式、套管式、板框式或板片式的热交换器。

    在图中以略图或方框表示的各个组成部分显然是众所周知的,它们的内部结构和操作对于构成或应用本发明或说明本发明的最佳形式并不重要。

    虽然就被认为是最佳的实施方案描述了本发明,但本发明并不限于这些公开的实施方案。相反地却规定本发明覆盖在所附权利要求的内容和范围内所包括的各种改进和等价装置。要对下述权利要求的范围给予范围最宽的解释,以便本发明包括所有这类改进以及等价装置和功能。

提高二氧化碳回收率的方法和设备.pdf_第1页
第1页 / 共12页
提高二氧化碳回收率的方法和设备.pdf_第2页
第2页 / 共12页
提高二氧化碳回收率的方法和设备.pdf_第3页
第3页 / 共12页
点击查看更多>>
资源描述

《提高二氧化碳回收率的方法和设备.pdf》由会员分享,可在线阅读,更多相关《提高二氧化碳回收率的方法和设备.pdf(12页珍藏版)》请在专利查询网上搜索。

一种由二氧化碳进料生产基本上是纯二氧化碳的方法和设备,二氧化碳进料包含约80%至约95%(体积)的二氧化碳。 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 机械工程;照明;加热;武器;爆破 > 制冷或冷却;加热和制冷的联合系统;热泵系统;冰的制造或储存;气体的液化或固化


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1