定向杠杆顶阀系统 【技术领域】
本发明一般涉及一种内燃机,尤其是涉及一种可以控制阀关闭的定向杠杆顶阀系统。
背景技术
众所周知,在顶置气门式发动机的阀操作系统中,通过V形凸轮随动件结合推杆和摇杆,就可以控制阀的运动。授予给Everts的美国专利US5357917就是这样的一个例子。但Everts的美国专利是在凸轮和阀之间运行的元件的复杂结合。
发明简述
本发明提供了一种定向杠杆顶阀系统,设计成基于凸轮旋转直接控制阀的运行。定向杠杆顶阀系统尤其适用于通过将凸轮旋转直接转换到阀杆来简化阀的运行。
定向杠杆系统可以利用一对大体为L形的杠杆,每一个杠杆都带有位于第一杠杆臂上的凸轮随动件表面和位于第二杠杆臂上的阀操作表面。所述杠杆可以套起来并且可绕着同一枢轴运动。
本发明的优选实施例提供了一种顶置气门式发动机,其包括具有外端的气缸孔;曲轴组件,曲轴组件包括基本上为直的曲轴,偏心地安装在曲轴上地基本为圆柱形的轴颈,可旋转地安装在轴颈上的单一件连杆,安装在曲轴上的平衡重,以及安装在曲轴上的正时齿轮。该发动机还包括具有凸轮面和位于气缸孔外端内侧的轴线的凸轮轴;两个具有打开和关闭位置的阀;两个阀杆,每个阀杆与一个阀相连;两个基本上为L形并且可枢转地安装的阀操作杠杆,每个杠杆包括具有与凸轮面接触的凸轮随动件的第一端,杠杆绕其枢转的枢转轴线,以及与阀杆接触的阀臂,凸轮面引起的杠杆运动使杠杆枢转,并使阀臂下压阀杆,从而打开阀。
本发明还提供一种发动机的定向杠杆系统,该系统包括:具有外端的气缸孔;具有至少一个凸轮面和位于气缸孔外端内侧的轴线的凸轮组件;两个具有打开和关闭位置的阀;两个阀杆,每个阀杆与一个阀相连。所述定向杠杆系统还包括两个基本上为L形并且可枢转地安装的阀操作杠杆,每个杠杆包括具有与凸轮突出部接触的凸轮随动件的第一杠杆臂,杠杆绕其枢转的枢转轴线,以及与阀杆接触的阀臂,凸轮突出部引起的杠杆运动使杠杆枢转,并使阀臂下压阀杆,从而打开阀。
杠杆的枢转轴线可以重合。另外,定向杠杆系统可以用一对大致L型的杠杆,它们不能相互嵌套,可绕着不同的但基本平行的枢轴运动。
本发明还提供了一种发动机的曲轴组件,其包括基本为直的曲轴,偏心地安装在曲轴上的基本为圆柱形的轴颈,可旋转地安装在轴颈上的连杆,安装在曲轴上的平衡重,以及安装在曲轴上的正时齿轮。
本发明还提供一种制造发动机用的具有所需连杆形状和所需厚度的连杆的方法,该方法包括:挤压出横截面与所需连杆形状相同并且包括一个挤压孔的材料棒;将所述棒切割成所需厚度的基本上相同的板件;以及在每个板件上精加工至少两个孔。
【附图说明】
图1是本发明顶置气门式发动机的剖视图;
图2是图1中顶置气门式发动机的端视图;
图3是图1中顶置气门式发动机去掉发动机机座的底视图;
图4是图1本发明优选实施例中顶置气门式发动机的定向杠杆系统的透视图;
图5是图1中顶置气门式发动机的凸轮、带有配重的曲轴、偏心轮和连杆的透视图;
图6是图5中连杆的平面图;
图7是图1本发明另一个优选实施例中顶置气门式发动机的定向杠杆系统的透视图;
图8是图1本发明另一个优选实施例中顶置气门式发动机的定向杠杆系统的透视图;
图9是图1中顶置气门式发动机去掉发动机机座的另一个实施例的底视图;
图10是制造图6中连杆的工艺简图。
【具体实施方式】
在详细解释本发明的实施例之前,应该能够理解本发明并不局限于下列附图和实施例中的构件排布和结构设置。本发明能够通过多种方式得以实施。而且也能够理解这里所使用的措辞和技术术语都是为了描述,而不应该理解为是一种限定,“包括”和“包含”的使用以及这里的不同实施例都是意味着包括此之后的所有部件以及附加的部件。
图1是顶置气门式发动机10的剖视图。顶置气门式发动机包括发动机壳体15,该壳体又包括曲轴箱20和气缸孔24。应该注意的是,在这里,“外”指的是远离曲轴箱20的方向,“内”指的是朝向曲轴箱20的方向,气缸孔24具有一个外端32,此处,气缸孔24与气缸盖28接触。气缸盖28安装在发动机壳体15上使气缸盖28能够封闭气缸孔24的外端32。在另一个实施例中,气缸盖28和发动机壳体做成一体。气缸盖28包括一个燃烧室36,此处,气缸盖28封闭气缸孔24。在气缸盖28上位于燃烧室36和进气集合管(未示出)之间的一个进气阀口(未示出)包含进气阀座(未示出)。在气缸盖28上位于燃烧室36和排气集合管(未示出)之间的一个排气阀口(未示出)包含排气阀座(未示出)。
顶置气门式发动机10还包括一个排气阀44,当排气阀44位于排气阀座40之内时,能够限定一个关闭的位置以关闭排气阀。当排气阀44离开排气阀座40时,能够限定一个打开的位置,这样就从燃烧室36经过排气阀口到排气集合管提供了一条通路。
顶置气门式发动机10还包括一个进气阀(未示出),当进气阀位于进气阀座之内时,能够限定一个关闭的位置以关闭进气阀口。当进气阀离开进气阀座时,能够限定一个打开的位置。这样就从进气集合管经过进气阀口到燃烧室36提供了一条通路。进气和排气阀口通常设置在垂直于曲轴轴线的平面上。在其它的实施例中,所述阀口也可以有其他的形式。进气阀和排气阀彼此之间互成角度,从而形成一个封顶式的燃烧室36。在其它的实施例中,所述进气阀和排气阀也可以平行于气缸孔24。
顶置气门式发动机10还包括带有基端和末端的排气和进气阀阀杆48,52(参考图3)。排气和进气阀阀杆48,52在基端被分别连接到排气阀44和进气阀。阀杆帽56,60分别覆盖排气和进气阀阀杆的末端,排气和进气阀阀杆48,52连同阀杆帽56,60或者其他间隙调节件形成一个阀杆组件。
顶置气门式发动机10还包括围绕着每一个阀杆48,52的压缩弹簧(未示出)和弹簧座49,51,当阀没有移动的时候,用于提供一种偏压力保持每个阀处于关闭位置。当阀处于打开位置的时候,所述弹簧还能提供力使阀系统构件之间保持接触。
顶置气门式发动机10还包括一个具有下端或裙端68的圆柱形活塞64(参见图1)。在气缸孔24内,活塞64可以往复平移运动。
参考图1到5,顶置气门式发动机10还包括一个可旋转地安装在发动机壳体15中的曲轴组件72,它基本位于曲轴箱20以内(参看图1)。当在发动机壳体15中旋转的时候,曲轴组件72限定了一个转速。曲轴组件72最好是包括一个基本上是直的滚花轴76来进行转动。所述轴76是通过两个曲轴轴颈80,84支撑。组合飞轮/冷却风扇88安装在发动机壳体15外侧所述轴76的一端(参见图2),所述轴76的另一端驱动类似剪草机刀刃、线性切割机、泵、或发电机(未示出)的装置。
曲轴组件72还包括偏心地安装在所述轴上的基本为圆柱形的轴颈或偏心轮92(参见图5)。偏心轮92安装在轴76上,这样偏心轮92与轴76同时旋转。在偏心轮92的外边缘还设置有一个轴颈面96。
在另一实施例中,曲轴组件72还可以包括一个多组件曲轴,或者偏心轮92和曲轴76形成一体。在其他的实施例中,偏心轮92也可以被其他更合适的结构所替代,或者是使用现有的曲轴。
参考图1和6,曲轴组件72还可以包括一个单一件挤压连杆100(参看图6),它可旋转地安装在偏心轮92上。在一个实施例中,连杆100可以是模铸成形或者其他合适的方法制成。在另一个实施例中,连杆100也可以制成多件形式。所述连杆100包括带有内支承面108(参看图6)的轴颈孔104,内支承面108可以和偏心轮92(参看图1)的轴颈面96滑动地配合。连杆100的活塞端112包括活塞端孔116,并被连接到活塞64的裙端68(参看图1)。孔118可以用来减少连杆100的重量。活塞销120穿过连杆100的活塞端孔116(参看图6),将连杆100的活塞端部112锚定到活塞64的裙端68(参看图1)。
连杆100可以由图10那样制成。连杆原料121被从挤压机123中挤压出来,然后采用锯126或者其他合适切割装置横向切割成基本上相同厚度的板件125。连杆100在挤压过程中最好是包括一个粗制的轴颈孔104和孔118。这样轴颈孔104接着被精加工,活塞端孔116通过钻孔器127钻孔成型并被精加工,从而形成单一件连杆100。在另一个实施例中,所述挤压过程可以有两个孔或者没有孔,在挤压过程后,所述孔都被精加工。
参考图1,顶置气门式发动机10还包括在发动机壳体15中的槽122,以通过单一件连杆100调节发动机15的组件。
曲轴组件72还可以包括安装在轴76上的平衡重124(参看图5),用于平衡由于活塞64和连杆100往复运动产生的力。平衡重124可以和轴76同时旋转。
曲轴组件72还可以包括安装在轴76上的正时齿轮136。正时齿轮136通过一个键128和键槽132配合固定在轴76上(参看图5)。这样正时齿轮136可以和轴76同时旋转,而且和曲轴组件72的转速相同。其中正时齿轮136可以包括多个齿140。
参考图1,3和5,顶置气门式发动机10包括一个凸轮组件144,它可旋转地安装在发动机壳体15上,并具有位于气缸孔24外端32内侧的轴线。
凸轮组件144还包括一个凸轮齿轮152。凸轮齿轮152包括与正时齿轮136的齿140相啮合的多个齿156,这样正时齿轮136就可以直接驱动凸轮齿轮152。凸轮齿轮152的齿数156为正时齿轮136的两倍,所以凸轮齿轮152的转速为正时齿轮136的一半。在另一个实施例中(未示出),在凸轮齿轮152和正时齿轮136之间可以应用一个空转齿轮系统,这样正时齿轮136驱动空转齿轮,空转齿轮又驱动凸轮齿轮152。
凸轮组件144还包括一个凸轮轴毂148,它与凸轮齿轮152形成单一件。凸轮组件144可旋转地安装在压入发动机壳体15中的销150上。凸轮轴毂148安装在销150端部并可绕着该端部旋转。在另一个实施例中,凸轮组件144还包括旋转地安装在发动机壳体15上的凸轮轴。而在另一个实施例中,凸轮齿轮152和凸轮轴毂148可以是分开的构件。
凸轮组件144还包括一个凸轮突出部160,它与凸轮齿轮152形成单一件并与其同时旋转。凸轮突出部160包括一个凸轮面164。在一个实施例中,凸轮组件144可以包括多个凸轮突出部160,而每个凸轮突出部160都可以有产生不同的阀运动特性的不同形状、大小、半径、或定向。在另一个实施例中,凸轮突出部160和凸轮齿轮152可以为单独的构件和/或不同的材料。
参考图3和4,顶置气门式发动机10还包括叠置的并且通常为L形的排气和进气阀操作杠杆168,172。每个杠杆168,172都包括具有凸出的凸轮随动件180的第一杠杆臂176,凸轮随动件180和凸轮面164相接触。
每个杠杆168,172都包括一对对齐的枢轴孔184,限定了杠杆168,172绕其枢转的枢转轴线188。杠杆168,172的枢转轴线188是重合的,如图2和4所示。每个杠杆168,172通过枢转销192可枢转地安装在发动机10上(参看图1和2)。
一个扭转弹簧194环绕枢转销192并且与每个杠杆168,172相配合,这样每个杠杆168,172就被偏压以使凸轮随动件180保持在凸轮面164上。在一个实施例中,也可以用延伸弹簧、压缩弹簧和其他偏压装置来替代扭转弹簧194的偏压力。在另一个实施例中,也可以使用更大力的阀杆压缩弹簧来偏压阀杆组件或杠杆,这样就不需要使用扭转弹簧或其他偏压装置。
每个杠杆168,172可以包括与阀杆帽60,56分别接触的阀臂196,200(参看图3)。这样杠杆168,172的旋转运动就会使阀臂196,200下压阀杆帽60,56,从而下压阀杆52,48和阀。使用不同厚度的阀杆帽56,60来消除阀杆48,52和杠杆172,168的阀臂196,200之间的间隙。在另一个实施例中,间隙调节件可以包括螺钉201和锁紧螺母203,如图7所示,也可以有或者没有阀杆帽56,60。
最好如图4所示,每个杠杆168,172都由两个冲压件204,208和管212构成,这三个构件204,208,212被电阻焊接形成杠杆168,172。杠杆168,172可以有不同的形式,也可以由不同的方法制成。例如,杠杆168,172也可以由单个冲压件形成(参看图7)。如果所需的阀运动特性需要杠杆168,172各不相同,排气和进气杠杆168,172并不需要相互相同。
如图1和3所示,在顶置气门式发动机10的运行中,火花塞216的火花引起燃烧室36内的压缩燃料/空气混合物的燃烧,从而产生燃烧气体的膨胀,使活塞64离开气缸孔外端32向内运动,这样活塞64沿着向内方向的运动推动连杆100向内运动,连杆100滑动地推动偏心轮92,由于偏心轮92偏心地安装在轴76上,从而能够有效地引起轴76的旋转。当轴76旋转时,正时齿轮136随同一起旋转。旋转的正时齿轮136驱动凸轮齿轮152,凸轮齿轮152又使凸轮突出部160一起旋转。
当排气杠杆168的凸轮随动件180在旋转凸轮表面164上滑动时,凸轮突出部160的轮廓增大部使凸轮随动件180向外运动。而排气杠杆168的凸轮随动件180的这种向外运动使杠杆168绕着其枢转轴线188枢转,从而使杠杆168的阀臂200向内运动。而阀臂200的向内运动下压阀杆帽56,并克服排气阀压缩弹簧的偏压力下压排气阀杆48和排气阀44。当排气阀44打开时,曲轴组件72继续旋转使活塞64向上运动,从而推动燃烧气体经过排气阀44,到达排气集合管。当凸轮突出部160继续转动时,凸轮突出部160的轮廓减小部和凸轮随动件180接触,排气杠杆168在排气杠杆扭转弹簧偏压力的作用下开始返回其原始位置。同时,排气阀44在排气阀压缩弹簧偏压力的作用下返回其原始关闭位置。
凸轮突出部160继续转动,使进气杠杆172的凸轮随动件180接触凸轮突出部160的轮廓增大部,凸轮随动件180再次向外运动,使进气杠杆172绕着其枢转轴线188枢转,带动进气杠杆172的阀臂196下压阀杆帽60,并克服进气阀压缩弹簧的偏压力下压进气阀杆52和进气阀。当活塞64由连杆100、偏心轮92、和轴76的牵引离开气缸孔24的外端32时,打开进气阀使燃料/空气混合物从活塞64上方的进气集合管进入到气缸孔24。当凸轮突出部160继续转动时,凸轮突出部160的轮廓减小部和凸轮随动件180接触,进气杠杆172在进气杠杆扭转弹簧偏压影响的作用下返回其原始位置。结果,进气阀在进气阀压缩弹簧偏压影响的作用下返回其关闭位置。
最后,轴76继续旋转,使活塞64向气缸孔24的外端32移动,压缩燃料/空气混合物,并且重复所述过程。
顶置气门式发动机的定向杠杆系统可以省掉很多现有技术的构件设计。从气缸孔外端向内设置并直接由正时齿轮驱动的凸轮组件不需要在顶置气门式发动机的曲轴和凸轮之间的正时链条或正时带以及相关的张紧装置。从气缸孔外端向内设置的凸轮还可以消除顶置凸轮发动机固有的润滑问题,从而降低发动机的制造成本。从气缸孔外端向内设置的凸轮还可以消除链条或带弹性的负面动态效应。
另外,定向杠杆系统还可以省掉现有技术中顶置气门式发动机必不可少的凸轮随动件、推杆和摇臂。由于扭转弹簧力可以抵消每个阀操作杠杆的惯性力,所以阀杆压缩弹簧可以更小,而且由于压缩弹簧只需要抵消所述阀、阀杆、阀盖和阀挡块的惯性力而不是整个阀系统的质量,所以定向杠杆系统的成本很低。另外,带有扭转弹簧的定向杠杆系统减少了作用于阀组件上的力,这样就不需要进行阀杆和阀杆帽的热处理,从而可以使用更小的压缩弹簧座。
所述四循环过程必须很迅速。例如,以3600rpm速度运行的顶置气门式发动机10需要每个阀每秒打开和关闭30次。结果,阀的构件和阀自身都必须快速响应凸轮突出部160的旋转。阀系统的自然频率应该满足一个最小值,以允许使用阀的加速运动特性,加速运动特性的必要的以获得良好的发动机性能,同时促进稳定的阀系统动态特性。
阀系统的自然频率与系统刚度和系统有效质量的比的平方根成正比。其中有效质量包括阀组件的平移质量和杠杆的旋转惯性。所以具有足够高刚度和较低有效质量的系统会对阀的运动进行适当的控制。
定向杠杆系统提供了一种廉价的高刚度、低有效质量的杠杆,从而获得所需的阀系统自然频率,使发动机性能良好,动态特性稳定。而且还减少了发动机的制造成本。
在图7所示的一个实施例中,杠杆168,172以单一件形式制造(例如冲压),从而能够保证上面优选设计的重要结构性构件和运行。
在图8所示的另一个实施例中,优选实施例中的单独凸轮突出部160可以用分开的凸轮突出部220,224所替换。在这个实施例中,凸轮突出部220,224不同的半径和定位方向能够改变所控制的每个阀的运动。在某些环境下,可以使阀打开不同的时间长度或者以不同的速率打开或关闭阀。另外,在另一个实施例中(未示出),杠杆可以是相同的但不必相同,不同的杠杆设计可以使阀具有不同的打开特性。
在图9所示的另一个实施例中,杠杆168,172布置成可以绕分开的但基本上平行的枢转轴线228,232枢转。这样杠杆168,172的运动就基本不会相互影响了。