具有改变其电阻值的电阻元件的电源电路.pdf

上传人:Y948****062 文档编号:1033991 上传时间:2018-03-27 格式:PDF 页数:52 大小:1.50MB
返回 下载 相关 举报
摘要
申请专利号:

CN200810190241.1

申请日:

2008.12.26

公开号:

CN101499656A

公开日:

2009.08.05

当前法律状态:

终止

有效性:

无权

法律详情:

未缴年费专利权终止IPC(主分类):H02J 1/00申请日:20081226授权公告日:20120829终止日期:20131226|||授权|||专利申请权的转移IPC(主分类):H02J 1/00变更事项:申请人变更前权利人:恩益禧电子股份有限公司变更后权利人:瑞萨电子株式会社变更事项:地址变更前权利人:日本神奈川县川崎市变更后权利人:日本神奈川登记生效日:20101109|||实质审查的生效IPC(主分类):H02J 1/00申请日:20081226|||公开

IPC分类号:

H02J1/00; H02H9/02; H02J7/00; G05F1/10

主分类号:

H02J1/00

申请人:

恩益禧电子股份有限公司

发明人:

田畑贵史

地址:

日本神奈川县川崎市

优先权:

2008.1.28 JP 2008-016832

专利代理机构:

中原信达知识产权代理有限责任公司

代理人:

孙志湧;穆德骏

PDF下载: PDF下载
内容摘要

一种具有改变其电阻值的电阻元件的电源电路,包括控制电路和电源电阻控制电路,该控制电路在突入电流流动时输出控制信号,该电源电阻控制电路将电流供给电容负载。设置在电源和电容负载之间的电流路径中的电源电阻控制电路,响应于控制信号增加电流路径的电阻,并且响应于控制信号的停止减小电流路径的电阻,从而输出或者停止控制信号使得突入电流被抑制到小于或者等于给定值的值。

权利要求书

1.  一种电源电路,包括:
控制电路,当突入电流流动时,所述控制电路输出控制信号;和
电源电阻控制电路,所述电源电阻控制电路将电流供给电容负载;
其中,所述电源电阻控制电路提供在电源和所述电容负载之间的电流路径中,响应于所述控制信号增加所述电流路径的电阻,并且响应于所述控制信号的停止降低所述电流路径的所述电阻;和
其中,输出或者停止所述控制信号以将所述突入电流抑制至小于或者等于给定值的值。

2.
  根据权利要求1所述的电源电路,其中,所述电源电阻控制电路包括:
第一电流供给路径,所述第一电流供给路径具有提供在所述电源和所述电容负载之间的电阻元件;和
第二电流供给路径,所述第二电流供给路径与所述第一电流供给路径并行连接并且响应于所述控制信号中断。

3.
  根据权利要求2所述的电源电路,
其中,所述电源电阻控制电路包括开关,所述开关短接所述电阻元件的输入和输出;和
其中,所述开关响应于所述控制信号中断所述第二电流供给路径,并且响应于所述控制信号的输出的停止而短接所述输入和所述输出。

4.
  根据权利要求1所述的电源电路,其中,在开始输出所述控制信号之后已经流逝了给定时间段后,所述控制电路停止所述控制信号的输出。

5.
  根据权利要求1所述的电源电路,其中,所述控制电路在所述突入电流的值超过预设阈值时输出所述控制信号,并且在所述突入电流的值不再超过所述阈值时停止输出所述控制信号。

6.
  根据权利要求5所述的电源电路,其中所述控制电路包括:
控制信号生成电路,所述控制信号生成电路生成所述控制信号;和
保持电路,所述保持电路保持从所述控制信号生成电路输出的所述控制信号并且持续地输出所述控制信号一给定的时间段,
其中,所述保持电路在下述时间段期间保持所述控制信号,即在所述时间段中由于电源电阻通过所述控制信号的输出的停止而被降低,导致所述突入信号再次超过所述阈值。

7.
  根据权利要求6所述的电源电路,进一步包括:
电流测量电路,所述电流测量电路测量所述突入电流的值,并且将表示所述突入电流的测量值的测量信号提供给所述控制电路,和
其中,所述控制信号生成电路基于所述测量信号和基准值之间的比较的结果生成所述控制信号。

8.
  根据权利要求4所述的电源电路,其中所述控制电路接收用于接通外部电源电路的接通信号并且基于所述接通信号生成所述控制信号。

9.
  根据权利要求8所述的电源电路,其中所述控制电路包括:
控制信号生成电路;
延迟电路,所述延迟电路延迟所述接通信号以生成延迟的接通信号,
其中,所述控制信号生成电路包括接收所述接通信号的第一输入和接收所述延迟的接通信号的第二输入,并且在所述接通信号的接收和所述延迟的接通信号的接收之间的时间段期间输出所述控制信号。

10.
  根据权利要求1所述的电源电路,进一步包括:
内部发生电压检测电路,所述内部发生电压检测电路检测从所述电源电阻控制电路输出的电压并输出表示所述输出电压的检测信号,
其中,所述控制电路接收接通外部电源电路的接通信号并且基于所述接通信号和所述检测信号生成所述控制信号。

11.
  根据权利要求1所述的电源电路,进一步包括:
电流测量电路,所述电流测量电路测量所述突入电流的值并将表示所述突入电流的测量值的测量信号提供给所述控制电路;和
内部发生电压检测电路,所述内部发生电压检测电路检测从所述电源电阻控制电路输出的电压并且输出表示所述输出电压的检测信号;
其中,所述控制电路包括:
选择器,所述选择器输出基于模式选择信号从下述组选择的信号作为所述控制信号,所述组由表示所述测量信号和基准值之间比较的结果的比较结果信号、接通外部电源电路的接通信号以及所述检测信号组成。

12.
  根据权利要求1所述的电源电路,
其中,所述控制信号包括第一控制信号和第二控制信号,和
其中,响应于所述第一控制信号或者所述第二控制信号增加所述电流路径的电阻,并且响应于所述第一控制信号或者所述第二控制信号的停止而降低所述电流路径的电阻。

13.
  根据权利要求12所述的电源电路,其中所述电源电阻控制电路包括:
第一电阻;
第二电阻,所述第二电阻通过中间结点与所述第一电阻串行连接;
第一开关,所述第一开关短接所述第一电阻的输入和所述第二电阻的输出;和
第二开关,所述第二开关短接所述第一电阻的所述输入和所述中间结点,
其中,所述第一开关响应于所述第一控制信号防止所述第一电阻的所述输入和所述第二电阻的所述输出之间的短路,并且响应于所述第一控制信号的输出的停止而短接所述第一电阻的所述输入和所述第二电阻的所述输出;和
其中,所述第二开关响应于所述第二控制信号防止所述第一电阻的所述输入和所述中间结点之间的短路,并且响应于所述第二控制信号的输出的停止而短接所述第一电阻的所述输入和所述中间结点。

14.
  根据权利要求13所述的电源电路,进一步包括:
电流测量电路,所述电流测量电路测量所述突入电流的值并且将表示所述突入电流的测量值的测量信号提供给所述控制电路,
其中,所述控制电路包括:
第一比较器,所述第一比较器基于所述测量信号和第一基准电压之间的比较的结果生成所述第一控制信号;
第一保持电路,所述第一保持电路保持从所述第一比较器输出的所述第一控制信号并且持续地输出所述第一控制信号一给定的时间段;
第二比较器,所述第二比较器基于所述测量信号和第二基准电压之间的比较的结果生成所述第二控制信号;和
第二保持电路,所述第二保持电路保持从所述第二比较器输出的所述第二控制信号并且持续地输出所述第二控制信号一给定的时间段;
其中,所述第一保持电路在下述时间段期间保持所述第一控制信号,在所述时间段中由于所述控制信号的输出的停止,所述突入电流再次超过所述阈值,和
其中,所述第二保持电路在下述时间段期间保持所述第二控制信号,在所述时间段中由于所述控制信号的输出的停止,所述突入电流再次超过所述阈值。

15.
  根据权利要求13所述的电源电路,
其中,所述控制电路接收接通外部电源电路的接通信号,和
其中,所述控制电路包括:
第一控制信号生成电路,所述第一控制信号生成电路基于所述接通信号生成所述第一控制信号并且在第一时间段期间持续地输出所述第一控制信号;和
第二控制信号生成电路,所述第二控制信号生成电路基于所述接通信号生成所述第二控制信号并且在第二时间段期间持续地输出所述第二控制信号。

16.
  根据权利要求15所述的电源电路,
其中,所述第一控制信号生成电路包括:
第一逻辑电路;和
第一延迟电路,所述第一延迟电路延迟所述接通信号以生成第一延迟的接通信号,
其中,所述第一逻辑电路包括接收所述接通信号的第一输入和接收所述第一延迟的接通信号的第二输入,并且在所述接通信号的接收和所述第一延迟的接通信号的接收之间的时间段期间输出所述第一控制信号,
其中,所述第二控制信号生成电路包括:
第二逻辑电路;和
第二延迟电路,所述第二延迟电路延迟所述接通信号以生成第二延迟的接通信号,
其中,所述第二逻辑电路包括接收所述接通信号的第三输入和接收所述第二延迟的接通信号的第四输入,并且在所述接通信号的接收和所述第二延迟的接通信号的接收之间的时间段期间输出所述控制信号。

17.
  根据权利要求13所述的电源电路,进一步包括:
内部发生电压检测电路,所述内部发生电压检测电路检测从所述电源电阻控制电路输出的电压并且输出表示所述输出电压的检测信号,其中:
所述控制电路接收接通外部电源电路的接通信号并且基于所述接通信号和所述检测信号生成所述第一控制信号和所述第二控制信号。

18.
  一种显示装置的驱动电路,包括根据权利要求1所述的电源电路。

19.
  一种显示装置,包括根据权利要求1所述的电源电路。

20.
  一种控制电流从显示器上的电容元件流动的方法,包括:
当所述显示器通电时,经由电阻器将电源电势施加于所述显示器;
当响应于施加的所述电源电势流入所述显示器的电流超过预定水平时,将所述电阻器的电阻设置为第一值;和
在设置了所述第一值之后所述电流下降到所述预定的水平之下时,将所述电阻器的所述电阻设置为低于所述第一值的第二值。

21.
  根据权利要求20所述的方法,进一步包括:
监测流入所述显示器的所述电流;和
将通过所述监测获得的值和所述预定的值进行比较,以设置所述第一值或者所述第二值。

说明书

具有改变其电阻值的电阻元件的电源电路
技术领域
本发明涉及一种电源电路,更具体地,涉及一种可应用于显示装置的驱动电路的电源电路。
背景技术
对于被嵌入诸如移动电话和PDA的移动设备的较大屏幕和较高分辨率的显示装置的需求日益增长。随着显示装置的屏幕变得更大,显示面板上的数据线变得更长。因此,显示面板上的数据线的寄生电容增加。随着显示装置的分辨率变得更高,连接至显示面板上的数据线的像素控制开关的数量增加。随着显示装置的分辨率的增加,数据线的数量增加。因此,显示面板的寄生电容的总值增加。
为了正确地驱动具有寄生电容的显示面板,需要具有高的输出电流供给能力的驱动电路。通常将MOS晶体管用作显示装置的驱动电路。在此种驱动电路中,输出电流供给能力的增加意味着连接至电源线的整个驱动电路的寄生电容增加。
当驱动具有大电容的负载时,在上电时突入电流(inrush current)能够在负载中流动。从电源观察到的电容越大并且在到电容的路径中的电阻越小,则突入电流越大。当突入电流流动时,能够产生通过以下等式(1)表示的反电动势电压。
E=-L●di/dt…(1)
在这里,E表示反电动势电压(V),L表示从电源观察到的电感(H)的值,并且i表示电源电流(A)。从等式(1)能够看出,反电动势电压是在极性上与电源相反的产生电压。因此,大值的反电动势电压能够在电源本身或者是电源的负载的装置中引起故障。
此外,突入电流能够降低布线的寿命。典型地,突入电流具有比正常操作电流大几倍到几十倍的电流值。因此,在被频繁地接通的装置的情况下,突入电流很有可能影响电源线的布线寿命。在诸如用于移动设备的显示装置的装置中,其中在半导体装置上提供电源线,电源布线的布线膜是薄的。因此,嵌入移动设备的显示装置中的突入电流值对布线寿命的影响已经备受关注。
通常,移动设备使用电池(可再充电电池)作为其系统的主电源。电池供给恒定的电压。因此,包括用于移动设备的显示装置的驱动电路的半导体集成电路在它的半导体装置中具有升压电源电路,用于内部地产生显示装置所要求的多个电压。升压电源电路是下述电路,即产生高于主电源电压的升压的电源或者产生负电压的降压电源(在下文中,降压也被称为“升压”,因为降压也是一种升压)。一个示例是下述电荷泵升压电源电路,该电荷泵升压电源电路将用输入电压充电的升压电容器的连接更改为使用输入电压的串联连接以通过时分驱动完成电压升压。
电荷泵升压电源电路要求在短时间内充电升压电容器,以便于创建在其中重复充电和放电的时分驱动所要求的电压源。因此,通过使用低电阻将升压电容器连接至输入电源。为了通过带有在指定的范围内的压降的时分驱动提供在电压处操作的整个驱动电路的电流值,升压电容器需要具有相对于在负载的正常操作中的电流值来说足够大的电容。即:电荷泵升压电路是使用从电源观察时的低电阻连接的大电容,并且能够增加在上电时的突入电流。
此外,为了增加电池寿命对于移动显示装置来说低功率消耗是非常重要的,并因此频繁地接通和切断显示装置。这增加突入电流的发生频率。已知用于抑制突入电流的技术(例如,请参见专利文献1和2)。
图1是示出专利文献1(日本专利申请特开No.2002-116828)中描述的技术的框图。如图1中所示,在专利文献1中所描述的电路中,将突入电流抑制晶体管111和电源路径串行地连接。突入电流抑制晶体管111控制电源电流。专利文献1中所描述的电路被构造为使得上电时它的电阻达到最大并且当确定突入电流已经消失时它的电阻变得最小。图2示出了说明专利文献1中所描述的电路的操作的波形图。图2A示出了突入电流抑制晶体管111的栅极-源极电压。图2B示出了突入电流抑制晶体管111的漏极-源极电压。图2C示出了DC/DC转换器的输入电流。
如图2A中所示,在专利文献1中的电路中,在上电时电源电流的增加率被减少到非常小的值并且电源电流逐渐地增加,并且,在确定突入电流已经消失的时刻,即:供给负载的电压接近指定的值时,电源电流值快速地减少回到正常电流值。专利文献1中所描述的电路如波形中所示操作以最小化初始的反电动势电压。
图3示出了说明专利文献2(日本专利申请特开No.2002-091584)中描述的操作的波形图。如图3中所示,专利文献2中描述的技术使电源电流Iout从上电时的值不断地增加,并且,当输出电压接近指定的值时,电源电流快速地减少回到正常电源电流值。电路如波形中所示操作以将反电动势电压抑制为定值。
发明内容
使用传统的技术设计半导体装置的电源布线寿命使得容许与频繁的上电相关联的突入电流,意味着增加电源布线的线宽。宽的电源布线能够增加半导体装置的芯片布局面积并增加芯片成本。
例如,在专利文献1的电路中,电源电流在时间t1开始增加并且被不断地增加直到时间t2,在时间t2达到指定的输出电压。在频繁地上电的设备中,必须考虑在时间t2处的峰电流值来设计其中通过电源电流的整个设备中的电源布线的寿命。为了特别在半导体装置中达到此目的,必须选择大线宽的布线,这造成芯片面积和成本增加的问题。
在专利文献2的技术中,以稳定的速度增加电源电流。因此,在软启动结束时,即,在确定电源电压已经达到指定的值并且没有突入电流存在时,最大的电源电流流动。专利文献2中的技术还要求考虑最大电源电流的电源布线的设计。因此,为了在半导体装置中实现该目的,必须选择大线宽的布线,这造成芯片面积和成本增加的问题。
此外,如图1所示的专利文献1中的电路具有绝对需要基准二极管116和114的构造。它还需要电容器118。在半导体装置上安装这些组件要求增加面积和增加成本。例如,提供作为半导体装置的外部的单独组件的电容器118是合理的。但是,外部电容器增加组件成本、部件存货成本、基板成本以及用于安装到基板的成本,增加整个设备的成本。即,这两种电路具有增加包括半导体装置的设备的成本的问题。
此外,因为频繁地进行上电,因此电源需要在短时间内上电至指定电压。但是,具有给定的最大可容许的突入电流的传统电路具有不能减少电源启动时间的问题。
存在对于用于显示装置驱动电路的下述电源电路的需求,该电源电路在保持最少地增加芯片成本的同时能够将突入电流的最大值抑制到小于或者等于给定的设计值的值。
将电源电路构造为包括控制电路和电源电阻控制电路,该控制电路当突入电流流动时输出控制信号,该电源电阻控制电路将电流供给给电容负载。设置在电源和电容负载之间的电流路径中的电源电阻控制电路,响应于控制信号增加电流路径的电阻并且响应于控制信号的停止减少电流路径的电阻,从而输出或者停止控制信号使得突入电流被抑制至小于或者等于给定值的值。
电源电路通过电源路径供给电力,当突入电流流动时该电源路径的电阻较大,否则较小。这将流过电容负载的最大电流抑制至小于或者等于设计值的水平。
根据本发明,能够将电源电路构造为能够将电源电路接通时出现的突入电流抑制至小于或者等于给定的突入电流值的值并且在较短的时间内启动电源。
这样,能够实现显示装置的驱动电路,该驱动电路能够在保持最少地增加芯片成本时将突入电流的最大值抑制为小于或者等于给定的设计值的值,并且能够在没有增加外部组件从而增加移动终端的尺寸和重量的情况下构造用于显示装置的驱动电路的半导体装置,所述移动终端在尺寸上以毫米竞争并且在重量上以克竞争。
附图说明
从下面结合附图对某些示例性实施例的描述,本发明的上述的和其它示范性方面、优势和特征将变得更加明显,其中:
图1是示出了现有技术的突入电流抑制电路技术的框图;
图2示出了说明现有技术的突入电流抑制电路的操作的波形图;
图3示出了说明现有技术的电子设备的操作的波形图;
图4是示出能够应用本示例性实施例的电源电路的设备的构造的框图;
图5是示出第一示例性实施例的电源电路11的构造的框图;
图6是示出第一示例性实施例的电源电流测量电路12的具体构造的框图;
图7是示出第一示例性实施例的控制电路13的构造的框图;
图8是示出第一示例性实施例的保持电路23的构造的框图;
图9是示出第一示例性实施例的电源电阻控制电路14的构造的框图;
图10示出了说明第一示例性实施例的电源电路11的操作的信号波形图;
图11是示出第二示例性实施例中包括电源电路11的电源系统的构造的框图;
图12是示出第二示例性实施例的电源电路11的构造的框图;
图13是示出第二示例性实施例的控制电路13的构造的框图;
图14示出了说明第二示例性实施例的操作的信号波形图;
图15是示出第三示例性实施例的电源电路11的构造的框图;
图16是示出第三示例性实施例的控制电路13的构造的框图;
图17是示出内部发生电压检测电路41的构造的框图;
图18示出了说明第三示例性实施例的操作的信号波形图;
图19是示出第四示例性实施例的电源电路11的构造的框图;
图20是示出第四示例性实施例的控制电路13的构造的框图;
图21是示出第五示例性实施例的电源电路11的构造的框图;
图22是示出第五示例性实施例的控制电路13的构造的框图;
图23是示出第五示例性实施例的电源电阻控制电路14的构造的框图;
图24示出了说明第五示例性实施例的操作的信号波形图;
图25是示出第六示例性实施例的电源电路11的构造的框图;
图26是示出第六示例性实施例的控制电路13的构造的框图;
图27是示出第七示例性实施例的电源电路11的构造的框图;
图28是示出第七示例性实施例的控制电路13的构造的框图;以及
图29是示出第七示例性实施例的内部发生电压检测电路41的构造的框图。
具体实施方式
(第一示例性实施例)
图4是示出能够应用示例性实施例的电源电路11的装置的构造的框图。在下述示例性实施例中,将会描述电源电路11被应用于移动电话1的示例。下面的描述不是意在将可应用电源电路11的设备限制到移动电话1。
参考图1,移动电话1包括控制单元2和显示单元3。控制单元2和显示单元3中的每一个被提供有来自电池18的电力。控制单元2和显示单元3被构造为使得它们可以彼此通信数据。
控制单元2包括CPU 4、存储器5、显示控制器6、图像存储器7、以及电源IC 8,它们通过总线17相互连接。
CPU 4控制移动电话1中所提供的各种装置并执行数据处理。CPU4解释从诸如输入装置(未示出)的装置接收的数据以执行计算并且将结果输出到诸如输出装置(例如显示单元3)的装置上。存储器5存储在处理期间要被CPU 4使用的数据。显示控制器6将图像存储器7中保存的图像数据转换为显示数据并将显示数据提供给显示单元3。图像存储器7保存要在显示单元3上显示的图像数据。电源IC8提供控制单元2的功能块所需要的电源。
显示单元3包括时序控制器9、LCD模块10、以及电源电路11。时序控制器9接收从显示控制器6提供的显示数据并将数据提供给LCD模块10。LCD模块10基于显示数据显示图像。电源电路11生成多个电压并将它们提供给LCD模块10。
图5是示出第一示例性实施例的电源电路11的构造的框图。电源电路11包括电源电流测量电路12、控制电路13、以及电源电阻控制电路14。如图5中所示,连接至第一端子Vddin的电容,连接至第二端子Vout的信号线,以及升压电路16组成电容负载15。第二端子Vout接收从升压电路16输出的电压。为了易于本发明的理解,呈现示例性实施例中电容负载15的构造并且该构造不是意在将电容负载15限制到连接至第一端子Vddin的电容和连接至第二端子Vout的电容。
电源电流测量电路12将输入电源电压Vin从外部源提供到电源电阻控制电路14。电源电流测量电路12根据电源电流Ivin的大小生成信号电压VAM并将信号电压VAM输出至控制电路13。控制电路13从电源电流测量电路12接收信号电压VAM并将控制信号CO输出至电源电阻控制电路14。电源电阻控制电路14接收从电源电流测量电路12输入的电源和来自于控制电路13的控制信号CO,并且控制电源电阻以将电力供给电容负载。
图6是示出电源电流测量电路12的具体构造的框图。如图6中所示,电源电流测量电路12包括电流计21。电源电流测量电路12将输入电源电压Vin输出至次级。与电源电流测量电路12的电源布线路径串行连接的电流计21根据电流值输出信号电压VAM。示例性实施例中的电流计21的构造并不限于特定的构造。因此,将会在下面的示例性实施例的描述中省略电流计21的具体的电路构造的描述。
图7是示出控制电路13的构造的框图。控制电路13包括比较器22和保持电路23。保持电路23将输入信号电压VAM的电压值与从基准电源Vs供给的基准电压比较。如果从比较器22的输出已经改变,那么保持电路23将来自于比较器22的输出的值保持一预定时间段。控制电路13将来自保持电路23的输出值输出为控制信号CO。将基准电源Vs设置为与当信号电压VAN达到突入电流限制水平(将会在后面描述突入电流限制水平)时的点处的电压值相等的电压值。为了提供噪音容限,比较器22具有滞后特性。
图8是示出保持电路23的构造的框图。保持电路23包括脉冲发生电路31和存储电路32。存储电路32包括端子D和G。端子D接收从比较器22提供的信号。端子G接收从脉冲发生电路31提供的信号。
脉冲发生电路31包括具有第一和第二输入端子的EXOR电路34和连接至第二输入端子的延迟电路33。EXOR电路34的第二输入端子接收从比较器22提供的信号。延迟电路33将信号延迟一段预定的时间并且第二输入端子接收在该段预定时间之后改变的延迟的信号。EXOR电路34将对于输入在其中的信号的操作的结果提供至存储电路32的端子G。
当输入信号已经改变时,进行从EXOR电路34的输出并且该输出在等于延迟电路33的延迟时间的时间段内保持为高。当端子G为低时,存储电路32将端子D处的值直接输出至端子Q。存储电路32保持在端子G从低变到高的时间出现在端子D上的值一段时间,在该时间段内端子G为高。就是说,保持电路具有下述功能,在输入信号已经改变之后在某一时间段内保持输入信号的值并且然后输出该值。
在示例性实施例中,可以通过同步电路实现组成保持电路23的脉冲发生电路31的延迟电路33,同步电路的延迟时间可以通过系统中的时钟控制。替代地,可以通过异步电路实现延迟电路33,该异步电路的延迟值通过电路常数确定。如果通过同步电路实现延迟电路33,则可以外部地设置延迟值。因此,示例性实施例中的延迟电路33的构造并不限于特定的构造。因此,将会在下面的描述中省略延迟电路33的具体电路构造的描述。
图9是示出电源电阻控制电路14的构造的框图。电源电阻控制电路14包括电阻组件27。电阻组件27包括与电源布线路径串行连接的电阻25和与电阻25串行连接的开关26。当控制信号CO的值为高时切断开关26并且控制信号CO的值为低时接通开关26。即,当控制信号CO为高时,电阻25串行地进入电源布线路径;当控制信号CO为低时,从电源布线路径移除与电源布线路径串行连接的电阻25。通过由p沟道MOS晶体管组成的传输门或者CMOS传输门可以实现开关26。
将会在下面描述第一示例性实施例的操作。图10示出了说明第一示例性实施例的操作的信号波形图。图10的图(a)示出了输入电源电压Vin中的时间变化。图10的图(b)示出了控制信号CO的信号波形。图10的图(c)示出了电源电流Ivin中的时间变化。图10的图(d)示出了来自于第一端子Vddin的电压(1倍输出电压)中的时间变化。图10的图(e)示出了从第二端子Vout输出的电压(2倍输出电压)中的时间变化。
图10的(c)中所示的设置最大突入电流水平是被设计为最大的电源电流值的电流值。突入电流限制水平是在示例性实施例中使用的电源电流水平并且具有大于突入电流水平的值。突入电流水平是下述水平,基于该水平传统的电源电路判断电流是突入电流还是正常电流。最大的操作电流水平是正常操作电流的最大值。在示例性实施例中,将会描述下述示例,其中将突入电流水平设置为大约是最大的操作电流水平的两倍的值。
使VL(V)是在上电时输出的电源电压的电压值,即,在电容负载(15)上的电压,C(F)是从电源观察到的负电容,Q(C)是它的电荷,并且i(A)是流过负载的电流,那么等式(2)保持:
VL=Q/C,Q=Q0+∫idt       ...(2)
在这里,Q0是上电时负载上初始电荷的量并且电流i的时间积分是在上电和观察时间点之间的时间段中的定积分。
当电源电流Ivin的值超过突入电流限制水平时,控制电路13检测突入电流的发生并且将控制信号CO设置为高。这时,电源电阻控制电路14的电阻25被串行连接。结果,电源电流Ivin的最大值上升至低于或者等于设置的最大突入电流水平的值。根据等式(2),通过电源电流Ivin逐渐地充电电容负载15。因此,电源电流Ivin的值逐渐地减少。该值可以被近似为
Ivin≈(Vin-VL)/R    ...(3)
当电源电流Ivin减少到突入电流限制水平时,控制电路13将输出控制信号CO设置为低。然后,电源电阻控制电路14的开关26短接电阻25的输入和输出。这样可以移除电源布线路径中的串联电阻并因此电源电流Vin再次根据等式(3)增加。
在这里,将突入电流限制水平和基准电源Vs的电压设置为使得电源电流Ivin的最大值变得小于或者等于设置的最大突入电流水平。可以通过计算(模拟)或者实际测量设计用于特定显示装置的基准电源Vs的电压值。
保持电路23防止已经再次增加的电源电流Ivin被判定为是突入电流的开始。在保持电路23的脉冲发生电路31中通过延迟电路33确定的延迟值被设置为大于时间tc和时间te之间的时间段并小于时间ts和时间tc之间的时间段的值,以防止控制电路13将在电源电流测量电路12处测量的电源电流Ivin判断为成为突入电流的开始从而再次增加电源电阻控制电路14的电阻。
如上所述,示例性实施例的电源电路11通过具有最大电流值的恒流源,对负载充电,其中所述最大电流值被容许为在上电时流动的最大突入电流,并且,当将负载充电到指定的电压时,电源电路11使恒定电源无效并且短接其输入和输出。因此,在示例性实施例的电源电路11中,电源电流Ivin降到突入电流限制水平,并且,在流逝某些时间之后,再次增加,因此比以前更加快速充电电容负载,并且在第一端子Vddin处的输出电压快速接近指定的电压值。
参考图10,时间te0是下述时间,在该时间处没有使用本发明输出的电压达到指定的值,该指定的值是最终电压的90%,并且时间te是下述时间,在该时间处使用本发明输出的电压达到90%。在使用本发明的情况下,输出电压达到指定的值的时间提前了te0-te的时间段。
(第二示例性实施例)
图11是示出根据第二示例性实施例的包括电源电路11的电源系统的构造的框图。第二示例性实施例中的电源系统包括外部电源电路(系统电源)和电源电路11。例如,像前面描述的电源IC8一样,在电源电路11的外部提供第二示例性实施例中的外部电源电路(系统电源)。响应于从CPU4输出的上电信号Spw,接通外部电源电路(系统电源)。接通之后,外部电源电路(系统电源)将输入电源电压Vin供给第二示例性实施例的电源电路11。
在第二示例性实施例中,也在电源电路11中输入上电信号Spw。外部电源电路(系统电源)在已经接收了上电信号Spw之后花费时间开始提供输入电源电压Vin。因此,第二示例性实施例的电源电路11在输入电源电压Vin被提供给电源电路11之前接收上电信号Spw。
图12是示出第二示例性实施例的电源电路11的构造的框图。将外部输入的上电信号Spw输入至第二示例性实施例的控制电路13。
图13是示出第二示例性实施例的控制电路13的构造的框图。控制电路13包括脉冲发生电路35。脉冲发生电路35包括具有第一和第二输入端子的EXOR电路37,和连接至第二输入端子的延迟电路36。EXOR电路37的第二输入端子接收上电信号Spw。延迟电路36将信号延迟预定的时间段并且第二输入端子接收在预定的时间段之后改变的延迟的上电信号Spw。脉冲发生电路35生成并输出具有等于延迟电路36的延迟值的宽度的脉冲作为控制信号CO。
可以通过同步电路或者异步电路实现延迟电路36的延迟值,该同步电路的延迟时间能够通过系统中的时钟控制,异步电路的延迟值通过电路常数确定。如果通过同步电路实现延迟值,则能够外部地设置延迟值。示例性实施例中的延迟电路36的构造并不限于特定的构造并从而将省略延迟电路36的具体描述。优选地,通过计算(模拟)或者实际测量将延迟电路36的值设计为使得在电源电阻控制电路14的电阻已经减少时电源电流Ivin变得低于或者等于设置的最大突入电流水平。
图14示出了说明第二示例性实施例的操作的信号波形图。如图14中所示,在以与第一示例性实施例的电源电路11相类似的方式控制突入电流的同时,第二示例性实施例的电源电路11能够将输出电压快速设置为指定的值。
如果像第二示例性实施例的电源电路11中一样能够从外部电源提供上电信号Spw,则通过更简单的电路能够实现本发明的功能。此外,第二示例性实施例的电源电路11能够导致控制电路13和电源电阻控制电路14基于上电信号Spw操作以在输入电源电压Vin上升之前增加电源电阻。因此,能够控制上电之后立即流动的突入电流。
(第三示例性实施例)
图15是示出根据第三示例性实施例的电源电路11的构造的框图。除了第二示例性实施例的电源电路11的组件之外,第三示例性实施例的电源电路11还包括内部发生电压检测电路41。内部发生电压检测电路41监测和处理下述两个电容器的(第一和第二电压V1,V2),所述电容器是电容负载,并且将基于结果的检测信号IIV输入到控制电路13。控制电路13的下述操作与第二示例性实施例中的相同,即在输入Vin上升之前响应于上电信号Spw增加电源电阻。
图16是示出第三示例性实施例的控制电路13的构造的框图。控制电路13包括EXOR电路42。EXOR电路42具有两个输入:上电信号Spw和从内部发生电压检测电路41输出的检测信号IIV。控制电路13将来自EXOR电路42的输出作为控制信号CO而输出。
图17是示出内部发生电压检测电路41的构造的框图。将内部发生电压检测电路41连接至第一端子Vddin和第二端子Vout。内部发生电压检测电路41包括第一比较器43、第二比较器44以及AND(与)电路45。第一比较器43将连接至第一端子Vddin的电容的充电电压(第一电压V1)与从第一电压源46提供的基准电压VC1进行比较并且将比较的结果输出至AND电路45。第二比较器44将连接至第二端子Vout的电容的充电电压(第二电压V2)与从第二电压源47提供的基准电压VC2进行比较并且将比较的结果提供给AND电路45。当第一电压V1变得高于或者等于基准电压VC1并且第二电压V2变得高于或者等于基准电压VC2时,AND电路45输出高电平信号作为内部发生电压检测电路41的检测信号IIV。通过计算(模拟)将基准电压VC1和VC2设计为使得当电源电阻控制电路14的电阻已经下降时电源电流Ivin的最大值变得低于或者等于设置的最大突入电流水平。替代地,可以基于实际测量外部地设置电压值。
图18示出了说明第三示例性实施例的操作的信号波形图。如图18中所示,第三示例性实施例的电源电路11,与第一和第二示例性实施例的电源电路11一样,在将电源电流Ivin保持在低于或者等于设置的最大突入电流水平的水平时能够通过从第一端子Vddin和第二端子Vout处的电压获得下述时间来将输出电压快速地设置为指定的值,在所述时间处电源电阻控制电路14的电源电阻被减少。
在第三示例性实施例的电源电路11中,通过基于更实际的内部生成电压(在第一端子Vddin和第二端子Vout处的电压)确定切换电源电阻控制电路14的电阻的时间能够实现更精确的电源电阻切换。
(第四示例性实施例)
图19是示出本发明的第四示例性实施例的电源电路11的构造的框图。参考图19,第四示例性实施例的电源电路11包括电源电流测量电路12、控制电路13、电源电阻控制电路14以及内部发生电压检测电路41。电源电流测量电路12和电源电阻控制电路14具有与第一示例性实施例的电源电流测量电路12和电源电阻控制电路14一样的构造。CPU41具有与第三示例性实施例中的相同的构造。在第四示例性实施例中,将模式选择信号Mode从外部源提供给控制电路13。
图20是示出第四示例性实施例的控制电路13的构造的框图。第四示例性实施例的控制电路13包括选择器48(3进1出选择器)。控制电路13还包括第一电路块、第二电路块以及第三电路块,其中第一电路块包括比较器22、保持电路23以及电压源24,第二电路块包括延迟电路36和EXOR电路37,第三电路块包括EXOR电路42。
提供给选择器48的是来自于保持电路23的输出、来自于EXOR电路37的输出以及来自于EXOR电路42的输出。选择器48基于模式选择信号Mode选择要输出至电源电阻控制电路14作为控制信号CO的输出。响应于控制信号CO的电源电路11的操作与第一至第三示例性实施例的操作相同。在第四示例性实施例中,电源电路11能够选择最适合于特定装置的操作模式。
(第五示例性实施例)
图21是示出了根据第五示例性实施例的电源电路11的构造的框图。第五示例性实施例中的控制电路13将第一控制信号CO1和第二控制信号CO2提供给电源电阻控制电路14。第五示例性实施例中的电源电阻控制电路14响应于第一控制信号CO1和第二控制信号CO2逐步地改变电阻。
图22是示出第五示例性实施例的控制电路13的构造的框图。第五示例性实施例的控制电路13包括生成第一控制信号CO1的第一控制信号生成电路51和生成第二控制信号CO2的第二控制信号生成电路52。第一控制信号生成电路51包括第一比较器53和第一保持电路54。第二控制信号生成电路52包括第二比较器56和第二保持电路57。
第一比较器53接收从电源电流测量电路12输出的信号电压VAM,将信号电压VAM与来自于第一电压源55的基准电压Vs1比较并将比较的结果提供给第一保持电路54。第一保持电路54基于从第一比较器53提供的比较的结果输出第一控制信号CO1。类似地,第二比较器56接收从电源电流测量电路12输出的信号电压VAM,将信号电压VAM与来自于第二电压源58的基准电压Vs2比较,并将比较的结果输出至第二保持电路57。第二保持电路57基于从第二比较器56提供的比较的结果输出第二控制信号CO2。
图23是示出第五示例性实施例的电源电阻控制电路14的构造的框图。电源电阻控制电路14包括电阻组件27。电阻组件27包括第一电阻61、第二电阻62、第一开关63以及第二开关64。从图23中能够看出,根据第一控制信号CO1和第二控制信号CO2,电源电阻控制电路14具有三种电源电阻设置,R1+R2、R2以及近似为0(这里保留开关的接通电阻)。
图24显示示出第五示例性实施例的操作的信号波形图。与以两级改变电源电压的电源电路比较,第五示例性实施例的电源电路11能够将输出电压快速地设置为指定的值。
(第六示例性实施例)
图25是示出根据第六示例性实施例的电源电路11的构造的框图。第六示例性实施例的电源电路11的基本构造与第二示例性实施例的电源电路11的构造相同。第六示例性实施例中的控制电路13能够在不依赖于信号电压VAM的情况下以两级降低电源电阻控制电路14的电阻。
图26是示出第六示例性实施例的控制电路13的构造的框图。第六示例性实施例的控制电路13包括第一控制信号生成电路71和第二控制信号生成电路72。第一控制信号生成电路71包括第一EXOR电路73和第一延迟电路74并且将第一延迟电路74的最佳延迟值设置为输出与第五示例性实施例的第一控制信号CO1相类似的信号。第二控制信号生成电路72包括第二EXOR电路75和第二延迟电路76并且将第二延迟电路76的最佳延迟值设置为输出与第五示例性实施例的第二控制信号CO2相类似的信号。
(第七示例性实施例)
图27是示出根据第七示例性实施例的电源电路11的构造的框图。第七示例性实施例的电源电路11的基本构造与第三示例性实施例的电源电路11的构造相同。第七示例性实施例中的电源电路11能够在不依赖于信号电压VAM的情况下以两级降低电源电阻控制电路14的电阻。第七示例性实施例中的内部发生电压检测电路41输出两个检测信号(第一检测信号IIV1和第二检测信号IIV2)。
图28是示出第七示例性实施例中的控制电路13的构造的框图。控制电路13包括第一EXOR电路77和第二EXOR电路78。第一EXOR电路77响应于上电信号Spw和第一检测信号IIV1生成第一控制信号CO1。第二EXOR电路78响应于上电信号Spw和第二检测信号IIV2生成第二控制信号CO2。
图29是示出第七示例性实施例中的内部发生电压检测电路41的构造的框图。第七示例性实施例中的内部发生电压检测电路41包括第一检测信号生成电路81和第二检测信号生成电路82。第二检测信号生成电路82包括第一比较器83、第二比较器84以及第一AND电路85。第二检测信号生成电路82包括第三比较器86、第四比较器87以及第二AND电路88。
第一检测信号生成电路81基于第一内部发生电压(第一端子Vddin处的电压)和基准电压VC11之间比较的结果以及第二内部发生电压(第二端子Vout处的电压)和基准电压VC21之间比较的结果的逻辑AND输出第一检测信号IIV1。
第二检测信号生成电路82基于第一内部发生电压(第一端子Vddin处的电压)和基准电压VC12之间比较的结果和第二内部发生电压(第二端子Vout处的电压)和基准电压VC22之间比较的结果的逻辑AND生成第二检测信号IIV2。这样,第七示例性实施例的电源电路11能够提供与第五示例性实施例中的相类似的信号波形。
在第四示例性实施例中,也能够设计以两级降低电源电阻控制电路14的电阻的电路。虽然在示例性实施例中已经示出1级和2级电源控制电路,但是也可以设计以三级或者更多级执行控制的电路。
此外,应当注意的是,申请人意在涵盖所有权利要求要素的等同形式,即使在后期的审查过程中对权利要求进行修改。

具有改变其电阻值的电阻元件的电源电路.pdf_第1页
第1页 / 共52页
具有改变其电阻值的电阻元件的电源电路.pdf_第2页
第2页 / 共52页
具有改变其电阻值的电阻元件的电源电路.pdf_第3页
第3页 / 共52页
点击查看更多>>
资源描述

《具有改变其电阻值的电阻元件的电源电路.pdf》由会员分享,可在线阅读,更多相关《具有改变其电阻值的电阻元件的电源电路.pdf(52页珍藏版)》请在专利查询网上搜索。

一种具有改变其电阻值的电阻元件的电源电路,包括控制电路和电源电阻控制电路,该控制电路在突入电流流动时输出控制信号,该电源电阻控制电路将电流供给电容负载。设置在电源和电容负载之间的电流路径中的电源电阻控制电路,响应于控制信号增加电流路径的电阻,并且响应于控制信号的停止减小电流路径的电阻,从而输出或者停止控制信号使得突入电流被抑制到小于或者等于给定值的值。 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 发电、变电或配电


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1