发明内容
为了克服现有的自由曲线外形零件圆周铣削过程中瞬时铣削力建模方法计算工作量大的不足,本发明提供一种自由曲线外形零件圆周铣削过程中瞬时铣削力建模方法,该方法首先通过采样时间间隔计算出各时刻所对应的刀具位置点,同时计算出每个刀具位置点对应的几何参数,然后通过数学推导建立局部坐标系下切入/切出角的数值计算模型和瞬时未变形切屑厚度的解析模型,最后建立局部坐标系下瞬时铣削力与瞬时未变形切屑厚度的关系,并将局部坐标系下的瞬时铣削力投影到整体坐标系下,可以减少自由曲线外形零件圆周铣削过程中瞬时铣削力建模方法的计算工作量。
本发明解决其技术问题所采用的技术方案是:一种自由曲线外形零件圆周铣削过程中瞬时铣削力建模方法,其特点是包括下述步骤:
(1)选定立铣刀和工件几何参数,包括立铣刀的半径RAD、螺旋角β0、刀齿数Nf、刀具偏心参数ρ和λ,得到工件表面矢量方程p(u)=[X(u),Y(u),Z(u)]T和工件毛坯边界的矢量方程pW(v)=[XW(v),YW(v),ZW(v)]T;设定切削参数,包括进给率Vf、轴向切削深度Rz、径向切削深度Rr、刀具主轴转速n;输入由CAM系统产生的加工工件的实际刀轨信息和采样时间间隔Ts;
(2)根据步骤(1)设定的采样时间间隔Ts和实际刀轨信息,按照下式
![]()
在实际刀轨上计算出各采样时刻对应的刀具位置点;
式中,t表示采样时刻;![]()
![]()
pen表示直线刀轨段的起点;pst表示直线刀轨段的终点;oCTP表示圆弧刀轨段的圆心;RCTP表示圆弧刀轨段的半径;
(3)根据步骤(1)给定的工件表面矢量方程,通过偏置,计算出理论刀轨的矢量方程pe(u)=[Xt(u),Yt(u),Zt(u)]T,
式中,
Xt(u)=X(u)+dY′(u)[X′(u)]2+[Y′(u)]2;]]>
Yt(u)=Y(u)+dX′(u)[X′(u)]2+[Y′(u)]2]]>
Zt(u)等于实际刀轨信息中刀心点的Z坐标值;
(4)按照下式,将步骤(2)中得到的刀具位置点pa(t)投影到理论刀轨上,得到等效刀具位置点pe(u(t)),
(pe(u(t))-pa(t))×na(t)=0
解非线性方程组,得到参数u(t),将参数u(t)带入理论刀轨矢量方程pe(u)中,即得到等效刀具位置点pe(u(t));
(5)将步骤(4)中解得的参数u(t)代入下式,即得到等效进给方向、等效法向量以及等效曲率,以等效进给方向、等效法向量以及等效曲率作为刀具位置点处的实际进给方向、实际法向量以及实际曲率;
fe(u(t))=[X′t(t) Y′t(t) 0]T
ne(u(t))=[0 0 1]T×fe(u(t))
Ke(u(t))=Xt′(u(t))Yt′′(u(t))-Xt′′(u(t))Yt′(u(t))((Xt′(u(t)))2+(Yt′(u(t)))2)32]]>
同时计算出等效进给方向在整体坐标系中的角位置;
θ(t)=arccos(fe(u(t))·i|fe(u(t))|)]]>
式中,i=[1 0 0]T;
(6)将刀具参与切削的区域沿轴向划分为N个等高梁段,根据步骤(1)给定的工件毛坯边界矢量方程、立铣刀几何参数和步骤(2)中得到的刀具位置点,通过下式计算刀刃片{i,j}的切入切出角和切出角;
(a)切入角:
![]()
式中,pW(vi,j,en(t))为满足方程|pa(t)-pW(v)|=RADi,j2的点,
RADi,j=RAD+ρcos[λ-tan(β0)RADz-2(i-1)πNf],i=1,2,···Nf,]]>Nf是刀刃数,j=1,2,…,N,z是刀刃片{i,j}中点的Z向高度;
(b)切出角:
刀具切入工件阶段;
刀具在其他切削阶段;
式中,
![]()
pD(t,m)为满足方程组
的点,
m表示当前刀齿之前的第m个刀齿,m=1,…,Nf
![]()
pW(vi,j,B,ex(t))为满足方程|pa(t)-pW(v)|=RADi,j2的点;
(7)通过下式计算作用在刀刃片{i,j}的铣削力:
![]()
![]()
式中,Ki,j,T(t),Ki,j,R(t)分别是与hi,j(t)相关的切向合径向瞬时铣削力系数,
Δa是等高梁段的高度,
![]()
![]()
hi,j(t,m)是利用步骤(5)中得到的等效曲率Ke(u(t)),通过下式计算
凸型曲面;
![]()
凹型曲面;
![]()
式中,RTP(t)=|1Ke(u(t))|,]]>ft=VfnNf;]]>
(8)将各个刀刃上的力转化到XS,YS和ZS方向:
![]()
![]()
式中,
是刀具在t时刻处与刀刃片{i,j}对应的切削角度,被定义为从YS向顺时针到刀刃片{i,j}的中点所转过的角度;
(9)对于每个侧刃,将作用在所有刀刃片上的微元力求和,求得t时刻局部坐标系下作用于各个侧刃的铣削合力:
FXS(t)=Σi,jFi,j,XS(t)]]>
FYS(t)=Σi,jFi,j,YS(t)]]>
(10)将局部坐标系下的铣削合力转化到X,Y和Z方向:
FX(t)=FXS(t)cosθ(t)-FYS(t)sinθ(t)]]>
FY(t)=FXS(t)sinθ(t)+FYS(t)cosθ(t)]]>
本发明的有益效果是:以理论刀轨上的等效刀具位置点对应的等效进给方向、等效法向量和等效曲率代替实际刀轨上的刀具位置点对应的进给方向、法向量和曲率,避免用非二阶连续的实际刀轨近似理论刀轨时所导致的预测铣削力的突变的现象;在考虑偏心的同时,推导出瞬时未变形切屑厚度的解析模型,无需用数值计算的方法计算瞬时未变形切屑厚度。利用本发明的方法,用MATLAB在个人计算机(Intel Core(TM)2Duo Processor,2.4GHz,2GB)计算10个周期的瞬时铣削力的时间为1.9s,比采用文献2的方法计算时间233.3s,计算效率提高122.79倍。
下面结合附图和具体实施方式对本发明进一步说明。
具体实施方式
实施例1:(1)选定半径RAD=6mm、螺旋角β0=30度的三齿硬质合金立铣刀在三坐标立铣床上对铝合金Al7050进行顺铣切削,刀具偏心参数ρ=0.0026和λ=31.8°,主轴转速n=2000RPM,进给率Vf=300mm/min,轴向切削深度Rz=10mm,径向切削深度Rr=3mm,采样时间间隔Ts=0.0002s,输入工件欲得到表面的矢量方程p(u)=[X(u),Y(u),Z(u)]T,式中
X(u)=20+105u(1-u)2+15u2(1-u)+40u3
Y(u)=5+90u2(1-u)+30u3 u∈[0,1]
0≤Z(u)≤10
毛坯边界的矢量方程pW(v)=[XW(v),YW(v),ZW(v)]T,式中
XW(v)=20+105v(1-v)2+15v2(1-v)+40v3-36v(1-v)49-364v+1184v2-1640v3+820v4]]>
YW(v)=5+90v2(1-v)+30v3+21(1-v)2-36v(1-v)+21v249-364v+1184v2-1640v3+820v4]]>v∈[0,1]
0≤ZW(v)≤10
XW(v)=20
YW(v)=8(1+v)-5v v∈[-1,0]
0≤ZW(v)≤10
XW(v)=60
YW(v)=38(v-1)+35(2-v)v∈[1,2]
0≤ZW(v)≤10
实际刀轨信息
…
GOT0/13.9002,16.9496,0.0000
CIRCLE/19.9000,16.9996,0.0000,0.0000000,0.0000000,-1.0000000,6.0000,0.0100,0.5000,12.0000,0.0000
GOTO/19.9500,10.9998,0.0000
CIRCLE/20.2133,52.2325,0.0000,0.0000000,0.0000000,-1.0000000,41.2336,0.0100,0.5000,12.0000,0.0000
GOTO/24.7369,11.2478,0.0000
CIRCLE/22.4035,32.7858,0.0000,0.0000000,0.0000000,-1.0000000,21.6640,0.0100,0.5000,12.0000,0.0000
GOTO/28.0904,11.8815,0.0000
CIRCLE/25.3711,22.0905,0.0000,0.0000000,0.0000000,-1.0000000,10.5649,0.0100,0.5000,12.0000,0.0000
GOTO/30.4537,12.8285,0.0000
CIRCLE/28.0568,17.2549,0.0000,0.0000000,0.0000000,-1.0000000,5.0337,0.0100,0.5000,12.0000,0.0000
GOTO/32.2469,14.4654,0.0000
CIRCLE/25.8212,18.5149,0.0000,0.0000000,0.0000000,-1.0000000,7.5952,0.0100,0.5000,12.0000,0.0000
GOTO/33.0908,16.3149,0.0000
GOTO/33.2840,16.9667,0.0000
GOTO/33.4579,17.6565,0.0000
GOTO/33.6215,18.4079,0.0000
GOTO/33.7774,19.2173,0.0000
GOTO/34.4212,22.9586,0.0000
GOTO/34.6224,24.0036,0.0000
GOTO/34.8583,25.0871,0.0000
CIRCLE/58.6472,19.7687,0.0000,0.0000000,0.0000000,1.0000000,24.3761,0.0100,0.5000,12.0000,0.0000
GOTO/36.3976,29.7262,0.0000
CIRCLE/52.0438,22.6689,0.0000,0.0000000,0.0000000,1.0000000,17.1642,0.0100,0.5000,12.0000,0.0000
GOTO/40.1300,35.0248,0.0000
CIRCLE/52.4252,22.0901,0.0000,0.0000000,0.0000000,1.0000000,17.8460,0.0100,0.5000,12.0000,0.0000
GOTO/44.3945,38.0271,0.0000
CIRCLE/55.0895,16.6900,0.0000,0.0000000,0.0000000,1.0000000,23.8675,0.0100,0.5000,12.0000,0.0000
GOTO/49.4660,39.8855,0.0000
CIRCLE/58.0277,4.7902,0.0000,0.0000000,0.0000000,1.0000000,36.1246,0.0100,0.5000,12.0000,0.0000
GOTO/54.8228,40.7723,0.0000
CIRCLE/59.7855,-13.1822,0.0000,0.0000000,0.0000000,1.0000000,54.1822,0.0100,0.5000,12.0000,0.0000
GOTO/59.9500,40.9998,0.0000
GOTO/60.0000,41.0000,0.0000
(2)根据步骤(1)设定的采样时间间隔Ts=0.0002s,按照下式,在实际刀轨上计算出刀具位置点
![]()
式中
t表示采样时刻
fa(t)=pen-pst|pen-pst|]]>
[R]=cosαs-sinαs0sinαscosαs0001]]>
αs=VfTsRCTP]]>
pen和pst分别表示直线刀轨段的起点和终点,oCTP和RCTP分别表示圆弧刀轨段的圆心和半径。
(3)根据步骤(1)给定的欲得到表面的矢量方程,通过偏置,计算出理论刀轨的矢量方程pe(u)=[Xt(u),Yt(u),Zt(u)]T,式中
Xt(u)=20+105u(1-u)2+15u2(1-u)+40u3-72u(1-u)49-364u+1184u2-1640u3+820u4]]>
Yt(u)=5+90u2(1-u)+30u3+42(1-u)2-72u(1-u)+42u249-364u+1184u2-1640u3+820u4]]>u∈[0,1]。
Zt(u)=0
(4)按照下式,将步骤(2)中得到的刀具位置点pa(t)投影到理论刀轨上,得到等效刀具位置点,
(pe(u(t))-pa(t))×na(t)=0
解非线性方程组,得到参数u(t),将参数u(t)带入理论导轨矢量方程pe(u)中,即得到等效刀具位置点pe(u(t))。
(5)将步骤(4)中解得的参数u(t)代入下式,即得到等效进给方向、等效法向量以及等效曲率,以等效进给方向、等效法向量以及等效曲率作为刀具位置点处的实际进给方向、实际法向量以及实际曲率。
fe(u(t))=[X′t(t) Y′t(t) 0]T
ne(u(t))=[0 0 1]T×fe(u(t))
Ke(u(t))=Xt′(u(t))Yt′′(u(t))-Xt′′(u(t))Yt′(u(t))((Xt′(u(t)))2+(Yt′(u(t)))2)32]]>
同时计算出等效进给方向在整体坐标系中的角位置
θ(t)=arccos(fe(u(t))·i|fe(u(t))|)]]>
式中,i=[1 0 0]T。
(6)将刀具参与切削的区域沿轴向划分为N个等高梁段,根据步骤(1)给定的毛坯的边界的矢量方程、立铣刀几何参数和步骤(2)中得到的刀具位置点,通过下式计算刀刃片{i,j}的切入切出角。
(a)切入角的计算
![]()
式中pW(vi,j,en(t))为满足方程|pa(t)-pW(v)|=RADi,j2的点,
RADi,j=RAD+ρcos[λ-tan(β0)RADz-2(i-1)πNf],i=1,2,···Nf,]]>Nf是刀刃数,j=1,2,…,N,z是刀刃片{i,j}中点的Z向高度。
(b)切出角的计算
刀具切入工件阶段
刀具在其他切削阶段
式中,
![]()
pD(t,m)为满足方程组
的点,
m表示当前刀齿之前的第m个刀齿,m=1,…,Nf
![]()
pW(vi,j,B,ex(t))为满足方程|pa(t)-pW(v)|=RADi,j2的点。
(7)通过下式计算作用在刀刃片{i,j}的铣削力:
![]()
![]()
式中
Ki,j,T(t),Ki,j,R(t)分别是与hi,j(t)相关的切向合径向瞬时铣削力系数,
Δa是等高梁段的高度,
![]()
![]()
hi,j(t,m)利用步骤5)中得到的等效曲率Ke(u(t)),通过下式计算
凸型曲面
![]()
凹型曲面
![]()
式中,RTP(t)=|1Ke(u(t))|,]]>ft=VfnNf.]]>
(8)将各个刀刃上的力转化到XS,YS和ZS方向:
![]()
![]()
式中,
是刀具在t时刻处与刀刃片{i,j}对应的切削角度,被定义为从YS向顺时针到刀刃片{i,j}的中点所转过的角度。
(9)对于每个侧刃,将作用在所有刀刃片上的微元力求和,求得t时刻局部坐标系下作用于各个侧刃的铣削合力:
FXS(t)=Σi,jFi,j,XS(t)]]>
FYS(t)=Σi,jFi,j,YS(t)]]>
(10)将局部坐标系下的铣削合力转化到X,Y和Z方向:
FX(t)=FXS(t)cosθ(t)-FYS(t)sinθ(t)]]>
FY(t)=FXS(t)sinθ(t)+FYS(t)cosθ(t)]]>
通过以上方法,即得到自由曲线外形零件圆周铣削过程中瞬时铣削力的模型。
从图1、2、3可以看出,本发明的方法有效地考虑刀具偏心对铣削力的影响,其结果与实际测量结果吻合,验证了本发明的有效性。
从图1、2、3、4可以看出,在稳定切削阶段,切削力、刀轨曲率和进给方向的角位置θ(t)随时间变化连续,没有文献1中用非二阶连续的实际刀轨近似理论刀轨时所导致的切削过程中的几何量和预测铣削力的突变的现象。
实施例2:(1)选定半径RAD=6mm、螺旋角β0=30度的三齿硬质合金立铣刀在三坐标立铣床上对铝合金Al7050进行顺铣切削,刀具偏心参数ρ=0.0026和λ=31.8°,主轴转速n=2000RPM,进给率Vf=450mm/min,轴向切削深度Rz=10mm,径向切削深度Rr=3mm,采样时间间隔Ts=0.0002s,输入工件欲得到表面的矢量方程p(u)=[X(u),Y(u),Z(u)]T,式中
X(u)=20+105u(1-u)2+15u2(1-u)+40u3
Y(u)=5+90u2(1-u)+30u3 u∈[0,1]
0≤Z(u)≤10
毛坯边界的矢量方程pW(v)=[XW(v),YW(v),ZW(v)]T,式中
XW(v)=20+105v(1-v)2+15v2(1-v)+40v3-36v(1-v)49-364v+1184v2-1640v3+820v4]]>
YW(v)=5+90v2(1-v)+30v3+21(1-v)2-36v(1-v)+21v249-364v+1184v2-1640v3+820v4]]>v∈[0,1]
0≤ZW(v)≤10
XW(v)=20
YW(v)=8(1+v)-5v v∈[-1,0]
0≤ZW(v)≤10
XW(v)=60
YW(v)=38(v-1)+35(2-v)v∈[1,2]
0≤ZW(v)≤10
实际刀轨信息
…
GOTO/13.9002,16.9496,0.0000
CIRCLE/19.9000,16.9996,0.0000,0.0000000,0.0000000,-1.0000000,6.0000,0.0100,0.5000,12.0000,0.0000
GOTO/19.9500,10.9998,0.0000
CIRCLE/20.2133,52.2325,0.0000,0.0000000,0.0000000,-1.0000000,41.2336,0.0100,0.5000,12.0000,0.0000
GOTO/24.7369,11.2478,0.0000
CIRCLE/22.4035,32.7858,0.0000,0.0000000,0.0000000,-1.0000000,21.6640,0.0100,0.5000,12.0000,0.0000
GOTO/28.0904,11.8815,0.0000
CIRCLE/25.3711,22.0905,0.0000,0.0000000,0.0000000,-1.0000000,10.5649,0.0100,0.5000,12.0000,0.0000
GOTO/30.4537,12.8285,0.0000
CIRCLE/28.0568,17.2549,0.0000,0.0000000,0.0000000,-1.0000000,5.0337,0.0100,0.5000,12.0000,0.0000
GOT0/32.2469,14.4654,0.0000
CIRCLE/25.8212,18.5149,0.0000,0.0000000,0.0000000,-1.0000000,7.5952,0.0100,0.5000,12.0000,0.0000
GOTO/33.0908,16.3149,0.0000
GOTO/33.2840,16.9667,0.0000
GOTO/33.4579,17.6565,0.0000
GOTO/33.6215,18.4079,0.0000
GOTO/33.7774,19.2173,0.0000
GOTO/34.4212,22.9586,0.0000
GOTO/34.6224,24.0036,0.0000
GOTO/34.8583,25.0871,0.0000
CIRCLE/58.6472,19.7687,0.0000,0.0000000,0.0000000,1.0000000,24.3761,0.0100,0.5000,12.0000,0.0000
GOTO/36.3976,29.7262,0.0000
CIRCLE/52.0438,22.6689,0.0000,0.0000000,0.0000000,1.0000000,17.1642,0.0100,0.5000,12.0000,0.0000
GOTO/40.1300,35.0248,0.0000
CIRCLE/52.4252,22.0901,0.0000,0.0000000,0.0000000,1.0000000,17.8460,0.0100,0.5000,12.0000,0.0000
GOTO/44.3945,38.0271,0.0000
CIRCLE/55.0895,16.6900,0.0000,0.0000000,0.0000000,1.0000000,23.8675,0.0100,0.5000,12.0000,0.0000
GOTO/49.4660,39.8855,0.0000
CIRCLE/58.0277,4.7902,0.0000,0.0000000,0.0000000,1.0000000,36.1246,0.0100,0.5000,12.0000,0.0000
GOTO/54.8228,40.7723,0.0000
CIRCLE/59.7855,-13.1822,0.0000,0.0000000,0.0000000,1.0000000,54.1822,0.0100,0.5000,12.0000,0.0000
GOTO/59.9500,40.9998,0.0000
GOTO/60.0000,41.0000,0.0000
...
(2)根据步骤(1)设定的采样时间间隔Ts=0.0002s,按照下式,在实际刀轨上计算出刀具位置点
![]()
式中
t表示采样时刻
fa(t)=pen-pst|pen-pst|]]>
[R]=cosαs-sinαs0sinαscosαs0001]]>
αs=VfTsRCTP]]>
pen和pst分别表示直线刀轨段的起点和终点,oCTP和RCTP分别表示圆弧刀轨段的圆心和半径。
(3)根据步骤(1)给定的欲得到表面的矢量方程,通过偏置,计算出理论刀轨的矢量方程pe(u)=[Xt(u),Yt(u),Zt(u)]T,式中
Xt(u)=20+105u(1-u)2+15u2(1-u)+40u3-72u(1-u)49-364u+1184u2-1640u3+820u4]]>
Yt(u)=5+90u2(1-u)+30u3+42(1-u)2-72u(1-u)+42u249-364u+1184u2-1640u3+820u4]]>u∈[0,1]。
Zt(u)=0
(4)按照下式,将步骤(2)中得到的刀具位置点pa(t)投影到理论刀轨上,得到等效刀具位置点,
(pe(u(t))-pa(t))×na(t)=0
解非线性方程组,得到参数u(t),将参数u(t)带入理论导轨矢量方程pe(u)中,即得到等效刀具位置点pe(u(t))。
(5)将步骤(4)中解得的参数u(t)代入下式,即得到等效进给方向、等效法向量以及等效曲率,以等效进给方向、等效法向量以及等效曲率作为刀具位置点处的实际进给方向、实际法向量以及实际曲率。
fe(u(t))=[X′t(t) Y′t(t) 0]T
ne(u(t))=[0 0 1]T×fe(u(t))
Ke(u(t))=Xt′(u(t))Yt′′(u(t))-Xt′′(u(t))Yt′(u(t))((Xt′(u(t)))2+(Yt′(u(t)))2)32]]>
同时计算出等效进给方向在整体坐标系中的角位置
θ(t)=arccos(fe(u(t))·i|fe(u(t))|)]]>
式中,i=[1 0 0]T。
(6)将刀具参与切削的区域沿轴向划分为N个等高梁段,根据步骤(1)给定的毛坯的边界的矢量方程、立铣刀几何参数和步骤2)中得到的刀具位置点,通过下式计算刀刃片{i,j}的切入切出角。
(a)切入角的计算:
![]()
式中pW(vi,j,en(t))为满足方程|pa(t)-pW(v)|=RADi,j2的点,
RADi,j=RAD+ρcos[λ-tan(β0)RADz-2(i-1)πNf],i=1,2,···Nf,]]>Nf是刀刃数,j=1,2,…,N,z是刀刃片{i,j}中点的Z向高度。
(b)切出角的计算:
刀具切入工件阶段
刀具在其他切削阶段
式中,
![]()
pD(t,m)为满足方程组
的点,
m表示当前刀齿之前的第m个刀齿,m=1,…,Nf
![]()
pW(vi,j,B,ex(t))为满足方程|pa(t)-pW(v)|=RADi,j2的点。
(7)通过下式计算作用在刀刃片{i,j}的铣削力:
![]()
![]()
式中,Ki,j,T(t),Ki,j,R(t)分别是与hi,j(t)相关的切向合径向瞬时铣削力系数,
Δa是等高梁段的高度,
![]()
![]()
hi,j(t,m)利用步骤5)中得到的等效曲率Ke(u(t)),通过下式计算
凸型曲面
![]()
凹型曲面
![]()
式中,RTP(t)=|1Ke(u(t))|,]]>ft=VfnNf.]]>
(8)将各个刀刃上的力转化到XS,YS和ZS方向:
![]()
![]()
式中,
是刀具在t时刻处与刀刃片{i,j}对应的切削角度,被定义为从YS向顺时针到刀刃片{i,j}的中点所转过的角度。
(9)对于每个侧刃,将作用在所有刀刃片上的微元力求和,求得t时刻局部坐标系下作用于各个侧刃的铣削合力:
FXS(t)=Σi,jFi,j,XS(t)]]>
FYS(t)=Σi,jFi,j,YS(t)]]>
(10)将局部坐标系下的铣削合力转化到X,Y和Z方向:
FX(t)=FXS(t)cosθ(t)-FYS(t)sinθ(t)]]>
FY(t)=FXS(t)sinθ(t)+FYS(t)cosθ(t)]]>
通过以上方法,即得到自由曲线外形零件圆周铣削过程中瞬时铣削力的模型。
从图5、6、7可以看出,本发明的方法有效地考虑刀具偏心对铣削力的影响,其结果与实际测量结果吻合,验证了本发明的有效性。
利用本发明的方法,用MATLAB在个人计算机(Intel Core(TM)2Duo Processor,2.4GHz,2GB)计算10个周期的瞬时铣削力的时间为1.9s,比采用文献2的方法计算时间233.3s,计算效率提高122.79倍。