由低温空气分离方法生产氩 本发明涉及一种由低温空气分离方法生产氩的方法。更具体说,本发明涉及一种方法可以回收基本不含氮的氩。
一般从空气中回收氩的方法是使用一由高压塔和低压塔组成的双塔蒸馏系统,将该系统与再沸器/冷凝器以及被连续在低压塔上的一侧线精馏塔热结合。从低压塔的塔底取出氧产物,从低压塔的塔顶取出至少一股富氮气流。将一部分通过低压塔上升的蒸气从中间部位取出并送入该侧线精馏塔。这部分蒸气一般含有5和15%摩尔氩含量和微量与氧相平衡的氮,在侧线塔中被精馏,产生富氩物流作为塔顶馏出物。一般说来,将该富氩物流看作粗氩,从侧线塔的塔顶取出,其氧含量范围从百万分之几至大约3%摩尔含量。通过经由位于侧线塔顶处的冷凝器为侧线塔提供回流来实现精馏。
因为氮的挥发度比氩大,在侧线塔进给中含有的大多数氮以粗氩形式排出侧线塔。氮一般被看作是氩产物中的杂质,因此限制侧线塔进给中的氮含量是重要的。虽然低压塔可以设计成从侧线塔进给中尽量除去氮,在实际操作中,一般还是存在一些氮。比如,装置的扰动和流量波动经常会引起低压塔的组成分布从设计位置移动到某个位置,此时进入侧线塔的蒸气部分中有氮。另外,位于低压塔底地再沸器/冷凝器会有小泄漏,这使氮从高压侧能进入按设计应是基本上无氮的区。
因为从侧线塔进料中完全除去氮是难以实现的,普遍接受的是在侧线塔顶中取出的粗氩中将有氮。结果,从侧线塔中取出的粗氩一般是通过将其送入同时包括精馏段和提馏段、位于其塔底的再沸器和位于其塔顶的冷凝器的蒸馏塔中,进行一次附加的分离步骤。有许多该工艺的专利描述了这样的塔。请见比如美国专利A-5,590,544。
许多文献报道过,通过从侧线塔的一中间部位取出粗氩可以降低从该侧线塔中取出的粗氩中的氮含量。
日本专利号07133982公开了通过从侧线塔的一中间部位取出所述粗氩并在取自该侧线塔顶第二蒸气清除流中除去氮可以降低粗氩中的氮含量。在日本专利号07146066中,因为承认简单地通过从侧线塔的一中间部位取出物流无法从氩中可靠地除去所有的氮,估计可以加入一附加分离塔来进一步处理取出的粗氩。
美国专利A-5,557,951和德国专利19636306-A2公开了从侧线塔在一中间部位取出粗氩的实施方法。在这两份公开文件中,对粗氩没有应用附加的分离步骤来进一步除去氮。因此,成功地应用这些公开文件须要保持侧线塔进料的氮含量低于某一界限值。
正如低压塔的偏离设计操作可以引起侧线塔进料中氮含量的增加到设计水平以上,侧线塔的偏离设计操作也可以引起粗氩中氮含量的增加,即使使用了蒸气清除流。比如,氮被允许用蒸气清除流排出侧线塔顶是很关键的。实际上,该物流还可以含有大量氩。因此,希望尽量减少蒸气清除流的流量以减少氩的损失。不幸的是,限制该蒸气清除流的流量会引起在侧线塔中氮的聚集,有可能引起粗氩中出现氮。
本发明允许以有效的成本和正常操作的方式生产基本不含氮的氩
本发明涉及一种低温分离空气以回收至少一贫氮的粗氩产物的方法,此时在一主蒸馏系统中实施该方法,该系统包括至少第一蒸馏塔,将含氮、氧和氩的进料混合物分离成为富氮的塔顶馏分和富氧的塔底馏分,还包括一侧线塔精馏来自主蒸馏系统的含氩进料物流,以生产基本不含氧的塔顶氩馏分。本发明改进的特征在于:
(a)含氮、富氩的侧线物流取自侧线塔高于含氩进料物流进口处的位置;
(b)将在步骤(a)中取出的含氮、富氩侧线物流送入一除氮塔,以除去所含的氮,其中该除氮塔包括至少一提馏段,其位置是在贫氮、富氩侧线物流进口位置的下方,而且此时向该除氮塔的提馏段提供蒸出的蒸气;
(c)从除氮塔的塔底回收贫氮的粗氩产物,并排出;以及
(d)从除氮塔的贫氮、富氩侧线物流进料位置与其重合或其上方位置除去除氮塔中至少一部分向上流动的蒸气,将该取出的部分返回到侧线塔的适当位置上。
在本发明方法的优选实施例中,步骤(a)取出的含氮、富氩的侧线物流是液体,可以从侧线塔在该塔的进料部位上方,优选从侧线塔顶下方1-10级之间除去。
在本发明方法的一实施例中,该侧线塔还可以包括一位于塔顶的再沸器/冷凝器,其中从侧线塔除去贫氧的塔顶氩馏分,而部分则在再沸器/冷凝器中冷凝。
关于使用部分冷凝的贫氧塔顶氩馏分,本发明的方法有几个实施例。在这些实施例中有:(1)可以将部分冷凝的贫氧氩分离成为一液相部分和一汽相部分,其中汽相部分作为一含氮清除气被排出;(2)可以将部分冷凝的贫氧氩分离成为一液相部分和一汽相部分,其中汽相部分被部分冷凝,而相则被分离成第二汽相部分和第二液相部分,而且此时该第二汽相部分作为含氮清除气被排出;(3)可以将部分冷凝的贫氧氩送入第一辅塔,以精馏成为第一辅塔塔顶馏分和第一辅塔塔底液,其中该第一辅塔塔顶馏分被部分冷凝,而相则被分离成第二汽相部分和第二液相部分,而且此时第二汽相部分作为含氮清除气被排出;(4)可以将部分冷凝的贫氧氩分离成为一液相部分和一汽相部分,其中该汽相部分被送入一精馏分凝器,产生一分凝器塔顶馏分,而此时该分凝器的塔顶馏分则作为含氮清除气被排出;以及(5)可以将部分冷凝的贫氧氩分离为一液相部分和一汽相部分,其中该汽相部分被送入第一辅塔,精馏成为第一辅塔塔顶馏分和第一辅塔塔底液,而且此时该第一辅塔塔顶馏分作为含氮清除气被排出。
在本发明方法中,除氮塔也可以包括一精馏段,使其位于贫氮富氩侧线物流的进入位置的上方位置;其中使出精馏段塔顶的蒸气塔顶馏分排出除氮塔并部分被冷凝,其中除氮塔精馏段的部分冷凝塔顶馏分被分离成为一液相部分和一汽相部分,此时汽相部分作为含氮清除气被排出。
当部分冷凝的贫氧氩被分离成为一液相部分和一汽相部分时,本发明的方法可以进一步包括将液相部分作为回流液返回到侧线塔。
本发明的方法特别适合于包括由一高压塔和一低压塔组成的双蒸馏塔的蒸馏系统,其中低压塔是主蒸馏塔。
在本发明的方法中,通过在适当的过冷物流和除氮塔塔底液之间进行热交换来提供步骤(b)的蒸气蒸出。
在本发明的方法中,在步骤(a)取出的含氮富氩侧线物流一般具有低的氧含量,即ppm级的数量。然而,如果步骤(a)取出的含氮富氩侧线物流含氧量较高,比如3%摩尔含量,本发明的方法仍然可以使用。在这样的情况下可以理解,可能需要附加的加工步骤来进一步提纯步骤(a)取出的含氮富氩侧线物流和贫氮粗氩产物。
图1至5是本发明方法几个实施例的示意图。
上面综合性地描述了本发明的方法,下面参考图1至5所示的几个实施例来进一步详细说明本发明。
在本发明的讨论中,术语“贫氮”包括“无氮”的概念。再有,术语“贫氧”包括“缺氧”。
在图1中,不含重组分如水和二氧化碳,并被冷却到适当温度的压缩进给气流作为物流101被引入到高压塔103的塔底。该进给空气流的压力一般大于3.5个大气压,而小于24个大气压,优选在5-10个大气压之间。高压塔的进料被蒸馏成为塔顶处的高压氮蒸气流105和塔底处的粗液氧物流115。
氮蒸气流105在再沸器/冷凝器113中被冷凝,产生液体物流107,随后将其分成两股物流,109和111。物流109作为回流液返回到高压塔。物流111流向低压塔129的塔顶作为回流液。虽然为了简化没有示出,低压塔的回流物流111在进入低压塔129之前经常通过与另一物流的间接换热而被冷却。
粗的液氧物流115经过任意次数的任选间接换热,最后作为物流127被引进低压塔。进入低压塔的进料被蒸馏成为塔顶处的低压氮蒸气物流131和塔底处的氧物流133。
从低压塔的中间位置取出含氩蒸气流作为物流135。该含氩物流可以含3至25%之间的氩,但是一般含氩5至15%之间,将其作为塔底进料送入侧线塔139。该侧线塔的含氩进料被蒸馏,在上升的蒸气中降低氧含量,并产生塔顶蒸气物流151和塔底液体物流137。
塔底液体物流137被返回到低压塔。
按照本发明的步骤(a),物流141在含氩进料的位置上方(这里所示为中间部位)从侧线塔139取出(在这一实施例中是作为液态)。按照本发明的步骤(b),物流141被送到包括提馏段147的除氮塔145中。
再沸器149产生提馏段147的上升蒸气流。可以通过任何数量的装置为除氮塔提供再沸,在此处为了说明,通过冷却再沸器149中的粗液氧物流115形成物流117来提供再沸。
在除氮塔中蒸馏进料141按照本发明的步骤(c)产生贫氮粗氩物流175。虽然本发明只追求使氩物流175中的氮含量比进料物流141中的氮含量有所降低,在一个优选模式中,物流175中的氮含量被降低到小于50ppm,最优选小于10ppm。
按照本发明的步骤(d),以物流143从除氮塔中除去上升流动的蒸气,返回到侧线塔139中。
从侧线塔中来的塔顶蒸汽151在再沸器/冷凝器153中被部分冷凝,形成两相物流155,然后该物流通过分离器161,收集液体作为物流157,供侧线塔作为回流液,并产生蒸气清除物流167。可以通过任何数量的适当装置来提供供侧线塔再沸器/冷凝器153的制冷,但是如图1中所示,一般是由部分汽化粗液氧,在此情况下是由物流117来提供。如果物流117被部分汽化,一般使其作为单独的蒸气物流123和液体物流125从再沸器/冷凝器153中排出,然后合并形成物流127。
并不需要将全部的粗液氧物流117都送到再沸器/冷凝器153中。在许多情况下,最好将物流117分开,只送一部分到再沸器/冷凝器中,而其余部分则直接送到低压塔中作为补充的进料,优选送入到部分汽化物流的进入位置上方。
图1中的本发明实施例比背景方法具有的优点是,在含氩的侧线塔进料物流135中可以容许更多的氮。上述优点本身以至少两种主要方式显示。
首先,因为在侧线塔进料中可以容许更多的氮,在低压塔内的侧线塔出口的上方区域,就不需要提供同样多的蒸气流。结果,对于侧线塔就可以得到更多的蒸气流,从而可以增加氩的回收。作为另一方式和/或作为补充方式,在低压塔的含氩物流135出口的上方部位需要较少的级数。
第二优点涉及偏离设计的操作。在跳跃操作和非正常操作时,本发明允许将过量的氮引入侧线塔。这种可能性是存在的,因为尽管更多的氮会出现在除氮塔的进料物流141中,提馏段147和再沸器149的存在,使氮可以从粗氩物流175中除去。
图2表明本发明的另一实施例。在图2中,初始的含氮蒸气清除物流167在换热器263中被部分冷凝,形成两相物流269,然后将其送入分离器265中,收集物流273作为侧线塔的补充回流液,并产生最终的蒸气清除物流271。使物流271进一步富氮,因而含有大量的氮,以物流135进入侧线塔。
可以使用如图2中所述的实施例对至少三种方式其中的一种是有利的。
首先,通过进一步冷凝物流167,可以进一步降低(相对于图1的实施例)蒸气清除物流271中的氩含量和蒸气清除物流271的流量,以降低氩的损失。
其次,如果蒸气清除气流量保持不变,但是蒸气清除气中的氮含量增大,就可以允许更多的氮在含氩物流135中进入侧线塔中。
最后,因为物流271的蒸气清除气组成和图1的物流167相同,就可以增加图2中物流167中的氩含量,使得再沸器/冷凝器153在更温热的温度下操作。
回流返回物流273的流量比较小,结果物流273也可以返回到低压塔中,而不是侧线塔中。这可以用几种不同的方式实现,比如:1)重力排出或用泵将物流273直接注入低压塔;2)重力排出或用泵将物流273注入再沸器/冷凝器153中,并在其中与粗液氧混合。
图3表示本发明的另一实施例,表示图2的另一实施例。在图3中,用塔361取代了分离器161,并将来自分离器265的液体作为补充的回流物流273返回到塔361中。可以使用这一实施例来除去侧线塔中的精馏段。如同在图2中所示的实施例,该实施例让蒸气清除物流271中的氮含量能大大增加,或者让离开侧线塔的物流155中的氮含量大为减少。
有可能用同时进行传热和传质的单个装置取代塔361和换热器263。这样的装置称作回流冷凝器,即分凝器(见比如美国专利5,592,832,1997)。
图4示出本发明的另一实施例。与图2相比,主要的变化是在除氮塔上增加一附加的精馏段481。来自下面提馏段147的蒸气当中,只有一部分进料141作为物流143返回到侧线塔中。其余的则向上通过精馏段481,并作为物流479离开除氮塔。物流479在换热器263中被部分冷凝,形成两相物流269,然后进入分离器265中,收集物流273作为除氮塔的回流液,并产生蒸气清除气流271。从侧线塔来的塔顶蒸气151在再沸器/冷凝器153中部分被冷凝,形成两相物流155,它再进入分离器161中,收集物流157作为侧线塔的回流液,并产生蒸气清除气流167。
如在图4中所示,氮以两股物流167和271从氩回收系统除去。这种形式对于含氩侧线塔进料135的氮含量经受到较大异常影响的工艺是有用的。在正常操作条件下,大多数氮作为物流167被除去,其操作模式很象图1中所述的。在异常操作条件下,过量的氮可以从除氮塔的塔顶除去,使侧线塔再沸器/冷凝器153的操作较少被扰动。这是很重要的,因为在再沸器/冷凝器153中主要工作热交换是很重要的。
对于图4来说,可能有用的变化方案包括:1)除去侧线塔中的精馏段177,以及2)将进料141作为蒸气送入除氮塔中。
图5说明本发明的另一实施例。按这一操作模式除去分离器265以便于补加塔565。蒸气物流167作为两股进料中的一股被送入塔565的塔底,液体物流583作为另一进料被送入到塔565的塔顶。物流583含有较低的氩浓度(一般为大约1%),因此使其在蒸气清除气流271中成为降低氩损失的优异回流液。
一般有利的是将塔底物流273送入低压塔,因为该物流除了氩以外还含有价值的氧。在这一实例中,通常便于将物流273与粗液氧物流585的剩余部分合并,作为将物流273最终送入低压塔的一种措施。
在图5中,塔565的回流液来自粗液氧物流117对于该领域的专业人员是众所周知的,任何具有低氩含量的液体物流都将适合代替粗液氧;某些实例包括冷凝的空气流或液氮流。
在图1-5中,氧的产物流133被描述为是从低压塔作为蒸气取出的。本发明并不限于这样的操作。该领域的专业人员都知道,氧物流133可以从低压塔作为液体取出用泵抽至出料压力,然后进行汽化和温热,再转给使用。这一技术被称为泵抽液氧。为了简化泵抽液氧物流的汽化过程,一般压缩一部分进料空气,然后冷却并冷凝那部分进料空气。一般说来,该冷凝的高压空气被用作高压塔、低压塔或两者的进料。在本发明中可以类似于使用粗液氧的方式使用冷凝空气。比如:1)可以冷却冷凝的空气,提供除氮塔再沸器149的热输入;2)使冷凝空气可以用作图5中的回流物流583;3)在被冷却和/或适当地降压以后,可以使用冷凝空气来提供图2-4中换热器263的制冷,以及4)可以在再沸器/冷凝器153中使用冷凝空气以补充粗液氧。
象冷凝空气一样,可以另外从高压塔中取出任何的液体物流,供再沸器149、换热器263和/或再沸器/冷凝器153使用。
在图1-5当中,通过冷却粗液氧为再沸器149提供热输入。如上所述,可以冷却其它的适当温热的流体。此外,可以在再沸器149中冷凝流体以提供热输入;一些实例包括一部分蒸气氮(如从物流105)和一部分蒸气空气(如从物流101)。
在图1-5当中,对任何蒸馏塔中的传质段(即提馏段或精馏段)的实质都没做说明,本领域的专业人员都知道,任何筛板塔盘、泡罩塔盘、阀板塔盘、无规填料或结构填料,单独或联合使用,都适合于本发明的应用。
在图1-5当中,离开氩回收系统的蒸气清除气流可以是也可以不是所需的产物,而且当不是所需的产物时,表示损失的粗氩。通过将蒸气清除气流循环到低压塔中就可以回收至少一部分所含的氩。如果蒸气清除气流的压力低于低压塔的压力,可以用机械装置将蒸气压缩,或者当其压力降低时(比如)排放到粗液氧或冷凝空气物流中。
图2-4中所示的换热器263的冷却是由温热或部分蒸发的粗液氧物流219提供的。一般说来,此冷却工作可以由温热或蒸发任何适当的工艺物流来提供。一个选择方案可用于所有的(或部分)氮回流物流111。在这一情况下,氮物流111可以被温热(这时它将先被用另一些足够冷的工艺物流的换热加以冷却),或者可以被至少部分蒸发(这时,物流111将先被减压)。当使用泵抽液氧作为选择的工艺条件时,就出现了另一可选择方案。在这一情况下,可以温热或蒸发冷凝的液态空气物流,就象在前面叙述的氮物流流111一样。选择最优选的物流是一优化的作业。使用的流体越冷,蒸气清除气流中的氮含量就越高,而氩损失就越低,因此使用氮回流液111似乎是最好的选择。另一方面,较冷的流体还是减少低压塔氧损失的最好进料物流。因此,在增加氧的回收和增加氩回收之间存在着一个折中方案。
对于所述的所有实施例,可允许的改变是除去侧线塔中的精馏段177 。
图1-5的实施例说明将本发明应用在双塔工艺上。本领域的专业人员将能理解,图1-5中所示的双塔工艺为便于理解是简化的。对于双塔系统往往有另一些加料方式,比如:1)可以使一部分进料空气物流膨胀以冷冻,并加到低压塔129中;2)可以将多种氧产物从塔129取出;3)可以将附加的富氮物流从塔129的进料位置127上方取出。虽然对于从空气中回收氧和氩来说,双塔结构形式是最普通的,本发明并不限于这种结构形式。比如,就有从空气中回收氧的单塔流程。这样的流程可以很容易地加上一侧线塔,而且在这样的情况下,这里所述的本发明是可以应用的。
为了使本发明有稳定的操作状态,对这些物流进行一定程度的流量控制是有利的,比如:对含氩蒸气物流135、除氮塔进料物流141、贫氮粗氩物流175和含氮清洗物流。可以通过直接的流量测量或通过某些指定的变量来进行流量控制。改变流量以保持关键组分的稳定性,这些可以是产物的组分或蒸馏塔系统内组分。在任何的控制方法中,可以理解为可用温度测量来代替直接的组成测量。
最后,在图1-5中示有含氩的物流135要转变成从低压塔到侧线塔的蒸气。当物流135处于液态时,本发明的方法同样可以任意地使用。在这一情况下,在侧线塔中的引入含氩进料的位置下方经常加上一提馏段,还需要一些装置给这一新塔段供应蒸气流(经常使用设在侧线塔底部的再沸器)。
虽然在本文中参考某些特定的实施例作了说明和描述,但是并不是用来限制所示的本发明细节。只要在权利要求的范围之内又不偏离本发明的精神,可以对这些细节进行各种改变。