骨代用品.pdf

上传人:111****11 文档编号:1015906 上传时间:2018-03-25 格式:PDF 页数:24 大小:1.04MB
返回 下载 相关 举报
摘要
申请专利号:

CN98811740.1

申请日:

1998.09.30

公开号:

CN1280508A

公开日:

2001.01.17

当前法律状态:

撤回

有效性:

无权

法律详情:

发明专利申请公布后的视为撤回|||实质审查的生效申请日:1998.9.30|||公开

IPC分类号:

A61L27/00; A61F2/28

主分类号:

A61L27/00; A61F2/28

申请人:

菲利普斯-奥里根陶瓷技术有限公司;

发明人:

J·R·约翰森; J·G·马克斯; W·D·约翰森

地址:

美国威斯康星州

优先权:

1997.10.01 US 08/944,006

专利代理机构:

中国专利代理(香港)有限公司

代理人:

张广育;王其灏

PDF下载: PDF下载
内容摘要

一种可用作骨代用品材料的坚固的多孔制品。该制品含有连续的坚固框架结构,此框架结构具有分隔贯穿整个体积的相互连通空隙的支柱,该制品还可能具有陶瓷的或骨传导性材料,它占据了至少与此框架结构相同的总体积的一部分。一种具有分散该制品内应力作用的弹性材料,或者作为在坚固框架支柱上的涂层,或者置于此框架支柱与陶瓷的或骨传导性-骨诱导性材料之间。

权利要求书

1: 一种可用作骨代用品材料的坚固制品,它包含连续的支撑性 坚硬框架,此框架具有分隔许多相互连通空隙的支柱,此制品还含有 包含在所述空隙内,但与其支柱分隔的骨传导性材料,以及位于支柱 和骨传导性材料之间的,并至少部分地将它们分隔的弹性夹层,此夹 层能够分散制品内的物理应力。
2: 权利要求1的制品,其中所述的弹性夹层含有一种聚合物。
3: 权利要求2的制品,其中的聚合物含有胶原蛋白,脱乙酰几 丁质,几丁质,聚(乙醇酸),聚(乳酸),乙醇酸和乳酸的共聚物, 以及它们的混合物。
4: 权利要求1的制品,其中所述的支撑性框架包含陶瓷。
5: 权利要求1的制品,其中所述的支撑性框架包含氧化锆。
6: 权利要求1的制品,其中所述的支撑性框架包含金属。
7: 权利要求1的制品,其中所述的金属是不锈钢。
8: 权利要求1的制品,其中所述的骨传导性材料包含磷酸钙。
9: 权利要求1的制品,其中所述的骨传导性材料是颗粒状的并 由所述弹性材料携带。
10: 权利要求4的制品,其中的骨传导性材料含有陶瓷。
11: 权利要求10的制品,其中的支撑性框架和骨传导性材料是 由磷酸钙组成。
12: 权利要求1的制品,其中所述的制品包含骨诱导性物质。
13: 一种用于形成外科手术移植用骨代用品并且有外部表面的坚 固制品,它包含构成连续的坚固支撑性硬框架的氧化锆和磷酸钙复合 材料,此框架具有分隔许多相互连通空隙的内壁,此制品还包含在这 些空隙内,由此内壁所携带的弹性涂层,它能够分散制品内的物理应 力。
14: 一种用于形成外科手术移植用骨代用品并且有外部表面的坚 固制品,它包含连续的支撑性坚硬框架,此框架具有分隔许多相互连 通空隙的内壁,此制品还包含由此内壁携带的并包涂这些空隙的弹性 涂层,被包的空隙敞开在制品的表面,可以在其内注入骨质磷酸钙水 泥。
15: 权利要求12的制品,在其被包涂的空隙内包含一种骨质磷 酸钙水泥。
16: 权利要求1,13和14任何之一的制品,包含附着于所述框 架的比较致密的结构成分。
17: 权利要求16的制品,其中所述的结构成分包括一种可用作 在长骨髓内道管中可接受心柱的棒材。
18: 权利要求16的制品,其中所述的结构成分包括一种可用作 膝部假肢胫骨托盘的板材。
19: 一种用于形成外科手术移植用骨代用品的坚固制品,它包含 连续的支撑性坚硬框架,此框架具有分隔内壁的支柱,在支柱之间具 有许多相互连通的空隙,此制品在其所述的空隙内还含有弹性涂层, 在支柱断裂时包裹此支柱,以便对此支柱提供液压和残余的抗压强 度,有助于制品的完整性。
20: 制造一种可用作骨代用品材料的坚固制品的方法,包括提供 一种连续的支撑性坚硬框架结构,此框架结构具有分隔许多相互连通 空隙的支柱,还包括提供包含在所述空隙内但与所述支柱分隔的第二 级硬框架结构,以及提供位于所述第一级和第二级框架结构之间,并 至少部分地分隔它们的弹性夹层,此夹层能够分散制品内的物理应 力。
21: 制造一种可用作骨代用品材料的坚固制品的方法,包括提供 一种连续的支撑性坚硬框架结构,此框架结构具有分隔许多相互连通 空隙的支柱,还包括提供一种在所述空隙内但与其支柱分隔的固体骨 传导性材料,以及提供位于所述第一级和第二级框架结构之间,并至 少部分地分隔它们的弹性夹层,此夹层能够分散制品内的物理应力。
22: 制造一种可用作骨代用品材料的坚固制品的方法,包括提供 一种连续的支撑性坚硬的烧结陶瓷框架结构,此框架结构具有分隔贯 通其整个体积的许多相互连通空隙的支柱,包括在所述空隙内提供第 二种陶瓷材料,并烧结空隙内的所述第二种陶瓷材料,以便形成包含 在所述空隙内但与其支柱分隔的第二级硬框架结构,还包括提供一个 位于所述第一级和第二级框架结构之间并至少部分地分隔它们的弹性 夹层,此夹层能够分散制品内的应力。
23: 权利要求22的方法,包括在烧结其第二种陶瓷材料之前, 使此第二种陶瓷材料与所述支柱分离的步骤。

说明书


骨代用品

    【发明领域】

    概括地说,本发明是关于骨代用品材料,特别是关于能够支持或促进骨生长进入其孔隙内的多孔材料。

    【发明背景】

    在骨折或其它骨损伤的情况下,适当的骨愈合和随后良好的骨重建,都高度依赖于保持骨碎片之间的稳定性,以及,在骨脱钙的情况下,主要取决于保持其生理应变力水平。使用外部的紧缚绷带和铸型固定等方式,可以获得外部的结构支撑。内部的结构支撑通常是借助于内部固定装置如骨板,螺钉和髓内连杆等来提供,其中的一些在晚些时候可能需要通过外科手术除去,所有的这些,对于病人都可能是令人忧虑的负担和损伤性地。

    因此,需要一种可作为骨代用品的产品,它既能作为骨移植材料,还能提供结构支撑作用。在替换或修复下肢长骨,以及为了用于脊椎融合技术时尤其是如此。创伤,骨质疏松,严重的骨关节炎或类风湿性关节炎,关节置换和骨癌,都可能需要包括使用结构性骨代用品材料在内的治疗。

    成功的骨移植需要有为骨长入提供支架的骨传导性基质;提供诱导骨再生和修复的化学作用剂的骨诱导因子;借助于它们能分化为成骨细胞和破骨细胞的能力,为骨再生提供基础构件块的生骨细胞,并且还需要对移植位置提供结构完整性,以使得被移植物支持的负荷适当。

    目前的骨移植材料包括自体移植物(使用来自该病人的骨),同种异体移植物(使用尸体骨),以及多种人造的或合成的骨代用品材料。自体移植物由松质骨和/或皮质骨组成。松质骨移植物实际上不提供任何结构完整性。当此移植物引入,并在其下面建造新骨时使骨强度增加。对于皮质骨,此移植物最初可提供某些结构强度。但是,当受移植骨渗入此移植物时,不能存活的骨将通过重吸收被除去,使此移植物的强度显著地降低。使用自体移植骨还可能在取骨位置对病人造成严重的疼痛,并且,可从病人获取这种骨的数量当然是很有限的。同种异体移植物类似于自体移植物,它们也由松质骨和/或皮质骨组成,但可获得较多的数量和体积。对同种异体移植物的消毒方法可能会损害此种移植物的结构和生物化学特性。使用同种异体移植骨至少要承担转移疾病的某些危险,以及移植物可能不能很好地被结合的危险。

    对于可方便使用的结构性骨修复材料,它们必须能够形成为适合修复位置的外形所设计的复杂形状。外形精确相符的移植物将会增进天然骨的整合作用,并可提供较好的负荷支撑能力。为了促进可引导受移植骨渗入移植物的骨重建和再生,常常要求天然骨和骨代用品材料之间有紧密的负荷支撑接触。理想的情况是,骨代用品材料的强度和硬度以及弹性(即它对负荷和负荷量的反应),应该与天然骨的相似。

    在如下文献中给出了对可植入矫形术材料的概述:Damien,Christopher J.,和Parsons,Russell J.,“骨移植和骨移植代用品:对当前技术及其应用的述评”,应用生物材料杂志,Vol.2,pp.187-208(1991)。

    已有多种材料被建议用作骨代用品材料,一方面包括适合于在膝关节和髋关节替换物周围填充缺陷的成形多孔金属物体,另一方面还包括成形陶瓷材料。一般来说,可通过烧结处理使陶瓷材料成形,其中是先将陶瓷材料如氧化锆的粉末在模具内压制成所需要的形状,然后加热至烧结温度。这样所形成材料的多孔性通常是非常低。采用磷酸钙(例如:氟磷灰石,羟磷灰石和磷酸三钙)的材料也可以用这种方式烧结,这种磷酸钙具有充当骨生长基质的能力(骨传导性)。

    已有人建议先将陶瓷粉末如氧化锆和羟磷灰石,或者氟磷灰石和尖晶石混合均匀,然后在模具内压制此混合物,并烧结或均匀地热压形成稍微多孔的氧化锆陶瓷,这种陶瓷具有至少部分地填充了羟磷灰石的小孔。参阅Tamari等的美国专利4,957,509,以及Aksaci,D等,用于骨桥的多孔氟磷灰石/尖晶石骨陶瓷,陶瓷会刊,Vol.48,p 283(1995)。还有人建议使用既具有高多孔结构部分,又具有低多孔结构部分的陶瓷制品,参阅Hakamatsuka等的美国专利5,152,791,Johansson的美国专利5,464,440,和Borom的美国专利4,237,559。还可参见Klawitter等的美国专利4,000,525。后一参考文献是使用Al2O3滑泥,使其发泡形成多孔结构,然后加热烧制。

    总的来说,被提议用于骨代用品的金属或陶瓷材料都是低孔隙度的,并且包括具有以磷酸钙基础材料填充或包涂的部分多孔表面的基本上致密的金属和陶瓷。所形成的结构具有致密的金属核心或陶瓷核心,以及核心材料和磷酸钙组合物的表面,或者基本上是磷酸钙的表面。这种类型的骨代用品材料通常重而且致密,并且常常是结构明显地比骨坚硬。参阅美国专利5,306,673(Hermansson等),4,599,085(Riess等),4,626,392(Kondo等),和4,967,509(Tamari等)。天然骨当处于加压受力状态时是逐渐地断裂(骨的某些成分有分散负荷的作用),然而如上所述的骨代用品材料通常是突然地严重断裂。发明概述

    本发明提供了一种可用作骨代用品材料的坚固的组合制品。该制品包含开放的支撑性骨架或框架,它们具有分隔许多空隙的相互连接的支柱,这些支柱上具有生物可吸收性弹性材料的涂层。优选地,这种制品在其空隙内含有骨传导性材料,并且由弹性材料将其与支柱分隔开。这种制品还可能包含促使骨向其内部生长的材料。

    在一个实施方案中,本发明提供了一种可用作骨代用品材料的坚固制品。此制品包含有连续性的,坚固的支撑框架,它具有分隔遍布于制品整个容积内的许多相互连通空隙的支柱,此制品还含有包含在其空隙内的骨传导性材料,以及比较有弹性的夹层,此夹层是生物可吸收性的,它位于支撑框架和骨传导性材料之间,并至少部分地将它们分隔开。在对施加于该制品上的物理学应力发生反应时,此夹层具有以类似于天然骨对所施加应力的反应方式,在制品内传递和分散负荷的作用,包括对支柱的液体力学加固。这种制品的断裂不是突然地彻底崩溃,而是逐渐地断裂。在此实施方案中,可以认为本发明提供了一种可用作骨代用品材料的坚固的组合制品,此制品在其骨传导性材料的内部是由开放的支撑性骨架或框架组成,这种骨传导性材料掺入了生物可吸收的弹性材料,或者是被这种弹性材料所环绕。此制品还可能包含促使骨向其内部生长的材料。

    该支撑性框架优选地是一种陶瓷材料的,它具有分隔遍布于制品整个体积内的许多相互连通空隙的支柱,以及由此支撑框架所携带的,并暴露于相互连通孔道的骨传导性组合物。这种骨传导性组合物至少占有与框架成分相同的总体积的一部分。合乎要求的是,这种支撑性框架应具有在20%-90%范围内的空隙容积,而优选地是至少具有50%。此外,该支撑性框架成分的孔道平均尺寸,合乎要求的至少是50μm,优选地是在200μm-600μm之间。

    可能是如下一种或几种组合的聚合材料是生物可吸收的聚合物:胶原蛋白,聚乳酸,聚羟基乙酸,乳酸和羟基乙酸的共聚物,脱乙酰几丁质,几丁质,明胶,或其它任何一种可重吸收的聚合物。这种聚合物材料可单独使用,也可以用颗粒状或纤维状生物可相容性材料加固,并且该组合物还可以包含已知诱导骨形成的生物作用剂。这种聚合材料,当受移植骨生长进入其空隙取代它的时候将被重吸收。

    骨传导性组合物,虽然它可能也是一种连贯的相互连接体,但其体积比框架空隙中的空间小,因此在它和框架支柱之间有一段裂缝。此裂缝填充了生物可吸收的弹性材料,从而提供了一个能量吸收界面,它具有分散负荷的作用和吸收液体冲击力的功能。而这种骨传导性组合物可以在手术过程中被加入到支撑性框架的空隙内,框架的支柱已用弹性材料包涂了。

    在一个优选的实施方案中,其支撑性框架,骨传导性组合物,以及弹性的,生物可吸收性材料,每种都是连续的三维结构,显示出3,3连通性,并占有相同总体积的至少一部分,而优选地是其全部,每种连续性结构都具有相互连通的孔道,与其它的孔道相互连接。在此,其弹性层具有从支撑性框架将负荷转移和分散至骨传导性材料的作用,增加结构的强度,并有助于在材料的极限状态下避免发生易碎状态。据认为,这样形成的制品与致密的陶瓷体或金属体相比较,将能更好地以生理学方式使应力转移到其周围的骨。在移植物周围刺激骨生长和重建的过程中,这种应力转移是重要的,并且对于避免“应力屏蔽”也是重要的,已知应力屏蔽将诱发有害的骨重建反应。

    在另一实施方案中,其支柱是由一种混合物或组合性构成,它含有支撑性材料及骨传导性材料,支撑性材料使此制品具有强度,而骨传导性材料至少部分地携带在其空隙的表面,这样使它暴露于相互连通的孔道,以便提供有助于骨生长的骨传导性环境,这些支柱包涂了一种生物可吸收的弹性材料,或者其空隙内含有这种材料。

    在进一步的实施方案中,其支撑性框架含有以生物可吸收的弹性材料包涂的支柱,以便分隔开口在制品表面上的空隙,在外科手术过程中,可用磷酸钙水泥填充这些空隙。在此实施方案中,在空隙内磷酸钙水泥会变硬,将支撑性框架与此变硬的磷酸钙水泥分隔开的弹性材料,对于由外部负荷在此框架上产生的力具有缓冲作用。

    在另一个实施方案中,在坚固框架的空隙内填充了一种生物相容性的,生物可吸收的弹性材料的组合物,作为包含磷酸钙或其它骨传导性材料颗粒的基质。

    在还有的另一实施方案中,本发明包括上述几种类型中任何一种的敞口分隔的制品,它还包含第二种基本上致密的连续性材料成分,此成分附着在第一种材料整体的表面,第二种成分具有不大于其总容积10%的孔隙度。这种基本上致密的相,可能是一种陶瓷,一种聚合物,一种金属,或者是一种组合材料。

    【附图说明】

    图1是一个断面示意图,图解说明用于制备本发明制品的陶瓷框架结构;

    图2是一个断面示意图,图解说明图1的陶瓷框架结构,其空隙内包含一种骨传导性材料;

    图3是一个断面示意图,图解说明图2的陶瓷框架结构,显示在陶瓷框架与骨传导性材料之间的缝隙内已掺入了一种弹性材料;

    图4是一个断面示意图,图解说明本发明的一个实施方案;

    图5是一个断面示意图,图解说明本发明的另一个实施方案;以及

    图6是负荷对应力的曲线图,说明本发明制品逐渐断裂的模式。

    图7是采用本发明一个实施方案的股骨假肢的剖面视图;和

    图8是采用本发明一个实施方案的胫骨托盘修复术的剖面视图。对优选实施方案的详述

    在制备本发明的制品时,优选地是从形成具有空隙的支撑性开放的框架开始,空隙的尺寸范围是大约50μm-1000μm,优选的是大约200μm-600μm,并且此框架具有至少约30%的空虚容积,优选地是至少约50%,而最优选的是至少约70%。此框架的材料可包括任何生物相容性的强硬材料,例如陶瓷材料,金属和复合材料如氧化锆,氧化锆/羟基磷灰石组合物,以及氧化锆韧化的矾土。优选地,此框架成分是一种陶瓷材料,氧化锆,矾土和磷酸钙,以及它们的组合物。

    在一种优选的方法中,是通过使陶瓷粉如氧化锆与一种有机粘合剂和水混合形成分散体,而制成陶瓷材料的滑泥浆。用这种陶瓷滑泥浆浸温和包涂一种有机的网状泡沫胶的支柱表面,此泡沫胶可以是例如由聚亚氨酯,聚酯或聚醚等构成的各种市售泡沫胶的一种。可将此网状材料浸泡在滑泥浆内,然后取出并沥干除去多余的滑泥浆。如果需要,可通过多种方法中的任何一种,进一步除去多余的滑泥浆,包括使此材料在一对紧密间距的滚筒之间通过,或通过以一股气流冲击此材料,可以清除由于表面张力填充于空隙内的残留滑泥浆。改变此滑泥浆的浓度,粘滞度和表面张力,可对保留在泡沫胶支柱表面的滑泥浆的量提供控制。为此目的湿润剂和粘滞度控制剂也可以使用。可以应用广泛多种网状的敞口材料,包括天然和合成的海绵状材料,以及编织的和非编织的材料,只是在此实施方案中必不可少的是,此敞口的多孔材料能够使陶瓷滑泥浆材料,通过结构中的孔道基本完全地渗入。

    一旦用滑泥浆包涂了网状支柱,可通过干燥法除去滑泥浆的溶剂,理想的是温和地加热,然后对此结构升温至烧结温度,在此温度下,陶瓷颗粒至少部分地烧结形成类似于网状支柱构型的,坚固的具有少量网架的结构。在达到烧结温度之前,合乎要求地是使经滑泥浆处理过的海绵状材料保持在能使有机材料热解或烧去的温度下,遗留下不完全烧结的陶瓷框架结构,然后使它升温至适当的烧结温度。

    对于大多数有机物,热解或氧化温度的范围大约是200℃-600℃,而对于与本发明有关的大多数陶瓷,烧结的温度范围是大约1100℃-1600℃。对于这些结构成分,氧化锆和矾土,或者基于氧化锆和矾土的组合物是优选的陶瓷材料,除非打算使这些支柱也是生物可吸收的,在这种情况下还可以使用磷酸钙。用于骨传导性部分的陶瓷材料的实例包括,磷酸钙如羟基磷灰石,氟磷灰石,磷酸三钙以及它们的混合物,生物活性玻璃,骨传导性水泥,以及含有硫酸钙或碳酸钙的组合物。在图1至图5中,图解示意显示了支撑性框架的一个小断面和高倍放大的部分,如在图1中所示的框架结构10,具有支柱12分隔的开放性空隙14。

    可用于形成强硬的连续性框架成分的金属包括钛,不锈钢,钴/铬合金,钽,钛-镍合金如Nitinol(镍钛金属互化物),以及其它一些超弹性金属合金。参阅:Itin等,“多孔性Nitinol的机械性能和形状记忆”,材料品质鉴定[32],pp.179-187(1994);Bobyn等,“多孔性钽植入材料的骨向内生长的动力学和表面力学”,矫形学研究学会,第43届年会会刊,p.758,1997年2月9-13日,加州旧金山;以及Pederson等,“对用于治疗无血管供应坏死的多孔性钽材料的有限成分品质鉴定”,矫形学研究学会,第43届年会会刊,p.598,1997年2月9-13日,加州旧金山,所有这些资料均被引入作为参考。

    可借助于多种加工程序使金属形成坚硬,连续的支撑性框架结构,包括燃烧合成,喷镀在一种“泡沫胶”基质上,化学烟雾沉积法(见美国专利5,282,861),脱模技术(见美国专利3,616,841),起泡沫的熔融金属(见美国专利5,281,251,3,816,952和3,790,365),以及如用于陶瓷粉末所述的,用金属粉末淤浆对网状的多聚泡沫胶进行复制。

    适合用于本发明的骨传导性材料和骨诱导性材料是生物学可接受的材料,骨传导性材料包括如胶原蛋白和包括羟基磷灰石磷酸三钙和氟磷灰石在内的各种形式的磷酸钙,骨诱导性物质包括例如:骨形态发生蛋白(例如rhBMP-2),脱矿物质的骨基质,转化生长因子(例如TGF-β),成骨细胞,以及已知诱导骨形成的各种其它的有机物质。骨传导和骨诱导特性可由病人的骨髓,血浆,或小块骨片提供,或者由市售的材料提供。骨诱导物质如BMP也可以用于本发明的制品,例如,通过在I型胶原蛋白稀释悬液中的这种物质的水溶液中浸泡此制品。可将骨诱导物质如TGF-β,在含有有效浓度TGF-β的生理盐水中用于本发明的制品,或者也可以在弹性材料中加入这种物质。

    可以认为,具有相互连通空隙或孔道的连续性支撑框架是主要的负荷承受成分,骨传导性材料通常比此支撑框架弱。如上面所述,此支撑性框架优选地是由陶瓷材料如氧化锆构成。如此形成的框架结构,使其空隙或孔道本身的宽度,平均大于分隔相邻空隙的支柱的厚度。这种负荷承受框基本上是完全连续性的,本身按三维结构相互连接,其孔隙部分基本上也是完全连贯的,本身也以三维空间相互连通。这二个三维相互连接的部分是彼此渗透的。可以把这种结构称为3-3连通性结构,在此第一个数字指的是连接负荷承受框架结构的维数,第二个数字指的是连接孔隙部分的结构维数。在Newnherm等的如下论著中对此连通性概念作了比较详细说明;“连通性和压电复合材料”,材料研究公报,Vol.13,pp.525-536(1978),特此引入此文献作为参考。对于在此所述的支撑框架,因为它是按3维连接,框架本身有数字3,对于其孔隙部分也可同样看待。相比之下,部分地被烧结的粉末组合物,恒定地含有一些不与所有的其它孔隙连通的分隔的小孔和空隙。在一种致密的基质中含有完全分隔的小孔(即盲端)的材料,具有3-0的连通性。一种材料具有一维通过基质完全相通的小孔,此材料构成3-1的连通性,而一种材料具有除了第三个面外有二个垂直而相互连通的小孔,此材料将具有3-2的连通性。

    在此优选的实施方案中,其框架的空隙中包含由骨传导性材料如磷酸钙构成的三维连续的网络,并且还包含由弹性的,理想地为生物可吸收的材料在框架支柱和骨传导性材料之间构成的三维连续的网络,这种构型提供了3-3-3的连通性。

    在支撑框架中孔道的尺寸优选地是至少约50μm,并且优选地是在200μm至大约600μm的数量级。优选地是基本上没有小于50μm的小孔或空隙。应该理解的是,此支撑框架中的孔道是无数不规则形状的孔道。通过它可发生生物向内生长过程的相互连通的孔道或空隙,构成了在其中骨可向内生长并形成血管的三维迷宫,也就是说,这些孔道具有与其它孔道的许多连接处,因此构成了通过此框架的曲折路径。一般认为,为了适当地支持骨向框架的孔道内生长,这些孔道必须能够容纳具有至少约50μm横切面积的组织管道。从概念上可简便地想像,本发明材料中一个50μm的孔道,能够容纳一条具有圆形切面和50μm横径的“蠕虫”通过它。换句话说,50μm的孔道应该使具有50μm直径的小球能够通过它。虽然还没有我们已知的用于测量孔道尺寸完全满意的方法,但是有可能测定本发明制品断面的扫描电子显微镜照片,观察其结构的平面投影,画几条穿过此显微镜照片的直线,测量与此直线相交的孔道,并且可应用均分和标准的偏离技术,使之能够估算出这些孔道的尺寸。

    当用于构成支撑性框架时,氧化锆和其它的陶瓷是非常硬的,并且远比骨更坚硬。虽然理想的是应用具有更近似于骨弹性模量的材料作为支撑性框架,但是,本发明应用坚硬材料的骨代用品材料也能良好地起作用。据认为,在愈合过程中,当侵入的骨渗透进入该制品生物可吸收的弹性材料和骨传导性部分时,骨与这种制品的最终结合发生在较大的表面积和深度上。坚固的骨/陶瓷界面导致压力能够容易地转移至陶瓷框架,并且从此框架移开,同以小面积的表面对表面接触和很少或没有骨渗透进入此制品的骨/陶瓷结合形成的结构相比较,具有显著较小的应力集中。

    当使用的骨传导性材料是一种陶瓷如磷酸钙,并且其支撑框架是一种陶瓷如氧化锆时,可采用几种方法制备本发明的制品。如上面所述,可通过如下步骤制造支撑性氧化锆框架结构:先在网状有机材料如聚亚氨酯,聚酯或聚醚等泡沫胶的支柱表面包涂氧化锆滑泥浆,随后对包涂的泡沫胶升高温度,以便驱除滑泥浆的溶剂,热解或烧去有机泡沫胶材料,最后加热此陶瓷,导致陶瓷颗粒至少部分地烧结。

    在此陶瓷框架冷却之后,可使用一种有机粘合剂,以磷酸钙填充它的空隙,并对形成的产品进行第二次烧结,这样,在陶瓷框架的空隙内形成了一个骨传导性材料的包夹网络。当加热此磷酸钙材料时,它将收缩,以致在构成陶瓷框架的支柱和包夹的磷酸钙网络之间形成了一个插入的间隙。为了确保磷酸钙材料收缩时能完全地脱离框架,可先用释放剂如石蜡轻微地包涂此框架。图2显示在支撑框架12的空隙内,在支撑框架的支柱和磷酸钙网络之间有已收缩的磷酸钙材料16和间隙或缝隙18。

    然后如上面所述,用一种弹性的,优选地是生物可吸收的材料填充间隙18。在这种构型中,其支撑框架从一个面至另一个面是连贯的,其包夹的骨传导性网络也是连续的并相互连通的,并且与支撑框架的空隙在空间上是共同延伸的。进而在某些实施方案中,其插入的弹性材料也是与框架和骨传导性网络连贯的和共同延伸的。图3用图解显示了在框架和磷酸钙网络之间形成的弹性夹层20。

    如上面所指出的,我们可以利用上述如氧化锆烧结的连续性坚硬的框架,并在此框架的空隙内形成一个由第二种陶瓷材料如磷酸钙构成的稍微小点的结构。在对完全成形和烧结的支撑框架加入第二种陶瓷材料的滑泥糊浆之前,可用一种材料如蜡包涂其支柱的表面,以便防止第二种陶瓷材料与支柱结合,并且使第二种陶瓷材料能与支撑框架分离开。因为当它们被烧结时,陶瓷材料如磷酸钙会收缩,所以第二种材料将占据比由支撑框架的环绕空隙所限定的空间稍微小点的空间。在分隔支撑性框架空隙的支柱和磷酸钙之间形成的空隙,可用一种生物可接受的弹性材料如乙醇酸和L-乳酸的共聚物填充。这样,所形成的制品包含如下结构:连续性的坚硬支撑框架,它具有分隔许多相互连通空隙的支柱;包含在第一级框架空隙内的第二级框架;以及位于这二种框架之间,并分隔它们的弹性夹层。据认为,此夹层至少部分地使第二级框架与第一级框架分离,并且由于它的弹性(与相对坚硬的第一级和第二级框架相比较),具有在框架之间分散内部负荷的作用。

    图6显示了对本发明的制品测试时由于压力所形成的典型的负荷-应力曲线(曲线A)。此曲线表明这种标本没有发生严重崩溃性的断裂。相反地,其弹性夹层能使标本内由于框架部分断裂所形成的应力被分散到框架的其它部位。此标本的断裂是逐渐发生的,近似于天然骨受到相似压力时所经受的断裂过程。为了比较,图6中的曲线B显示出不存在弹性材料的类似材料发生了严重崩溃性断裂。还证明当用弹性聚合物包涂支柱而没有第二级框架时,也表现出逐渐断裂的模式。

    合乎要求的是,第一级支撑框架是由坚固的材料如氧化锆构成,而第二级框架是由能提供骨传导特性的材料如磷酸钙构成,但是在要求完全是生物可吸收的材料时,第一级支撑框架也可以是磷酸钙复合材料。

    当其框架成分是金属是,可以按照相同于用陶瓷材料框架成分时的方式,构成具有相互连通孔隙的二部分系统,也就是说,可将骨传导性材料掺入支柱内,或者可在金属支柱的空隙内形成骨传导性材料,或者使之在此空隙内发生泡沫并被烧结,随后导入弹性的界面。

    在此所指的“弹性”材料合乎要求的是聚合物性质的,并且优选地是生物可吸收的。用名词弹性,我们意指此材料当处于应力之下会变形而不表现出脆性断裂,这种变形导致在制品内使应力分散开。这种弹性材料在支柱断裂时还具有包裹此支柱的作用,从而可提供残余的抗压强度,并有助于保持制品的物理学结构完整性。这种聚合材料优选地是生物可吸收的聚合物,可以是下列材料中的一种或者是它们的组合物:胶原蛋白,聚(乳酸),聚(乙醇酸),乳酸和乙醇酸的共聚物,几丁质,脱乙酰几丁质,明胶,或其它任何可重吸收的聚合物。可以单独使用这种聚合材料,也可用颗粒状或纤维状的生物相容性材料使其加强,还可以包含一种或几种能诱导骨形成的生物作用剂。胶原蛋白和其它一些聚合材料都可作为骨诱导物质如BMP和各种骨生长蛋白的适合载体。当受移植的骨生长进入其空隙取代它的时候,生物可吸收性聚合材料将被重吸收。

    在形成包含涂层的框架时,合乎要求的是加热氧化锆框架成分,使之达到其液体的滑泥浆赋形剂基本上被全部驱除,并且开始部分地烧结的温度,这种状态被称为部分烧结阶段。在此时,可使用羟基磷灰石滑泥浆或组合的氧化锆和羟基磷灰石滑泥浆,以加热法驱除滑泥浆的溶剂,然后使氧化锆和羟基磷灰石升温至烧结温度,被共同烧结。可对磷酸钙的滑泥浆加入粘性控制剂和泡沫发生剂如过氧化氢,或者通入压缩气体。还可对它掺入纤维状的纤维素材料。当把羟基磷灰石滑泥浆导入氧化锆支撑框架结构时,加热导致此滑泥浆起泡并形成泡沫,以致在磷酸钙中形成了许多更小的孔隙。进一步加热将烧去其纤维素材料,逐渐增加孔隙的相互连通性。

    在另一个实施方案中,用于包涂聚合物网并产生陶瓷网的滑泥浆含有支撑性框架材料(如氧化锆)和骨传导性材料(如磷酸钙)二种组分。用滑泥浆包涂这种网状的聚合物基质,并使多余的滑泥浆沥干。使此制品通过挤压滚筒或用压缩空气冲击制品,可进一步除去多余的滑泥浆。将形成的材料加热驱除溶剂,热解其有机组分,并且共烧结此复合材料的二种成分。在此氧化锆-磷酸钙系统中,相对于总的氧化锆/磷酸钙体积,骨传导材料(磷酸钙)的含量范围优选地是10%-90%的体积,而更优选地是大约10%-25%的体积或75%-90%的体积,使用了足够的骨传导性材料,以致对于生长中的骨能提供一个骨传导性表面。适合的结构可能使用例如25%体积的磷酸钙和75%体积的YSZ(氧化钇稳定化的氧化锆)。产生的该网状制品具有由这二种材料的均匀混合物构成的支柱。在氧化锆支柱的表面,磷酸钙可能似乎像一些渺小的岛屿。但无论如何,在此实施方案中其骨传导性材料仍然是暴露于制品中的孔道,使之对于正在侵入的骨可提供一种骨传导性作用。当然,如果需要,其支撑性结构可以是100%的骨传导性材料如磷酸钙。

    可以通过几种方法使本发明的骨代用品材料形成适当的形状,用作骨代用品。在一个优选的方法中。应用普通的切割工具如剪刀,削皮刀(scalpels),和热丝切削刀(hot wire cutter)等,可简便地使具有敞口空隙的有机材料如网状的聚亚氨酯泡沫胶成形为所要求的形状。所述任何一种方法成形的泡沫材料,可用于制成本发明的制品。在另一种方法中,是用氧化锆或其它陶瓷滑泥浆包涂如前面所指出的有机泡沫胶,将它加热驱除溶剂并使陶瓷转变成“未成熟”状态,此时可使它成形为所需要的形状。在再一种方法中,可借助于标准的机械方法如锯和磨,喷水或激光切割等,使已完全烧结的本发明骨代用品成形。

    如果该制品的支撑框架是金属的,那么可在导入骨传导性或骨诱导性材料之前,通过适当的机械加工使它成为所需要的形状。可设法首先用蜡填充金属材料的孔隙,并使形成的结构凝结,这样在机械加工过程中,蜡可支撑此金属结构,随后驱除蜡只要使蜡熔化。当金属框架成分含有非常薄的壁结构,并具有大的空隙,因此其支柱易被无意弯曲时,这种处理可能特别有用。

    在另一实施方案中,本发明的制品包含已加入弹性材料的支撑框架,此框架本身具有比较大的孔道和高度空虚的体积,并附着在一起,因为烧结成了较致密的次级结构成分,它可能是相同或不同的材料,但是它具有较小的孔道和较小的空虚体积。优选的情况是,这种较致密的部分基本上是完全致密的,也就是说,它具有小于10%的空虚体积。此较致密的部分可形成如下各种形状:半管形板材,用于整个髋部和膝部置换的棒材,可用作在长骨髓内道管中可接受的心柱,或者是可用作膝部假肢胫骨托盘的板材等等。后一种材料可形成与第一部分相关联的薄层,所形成的结构类似于天然骨,其中第二部分可能像皮质骨-坚硬,致密,作为骨的外层,而其第一部分可能稍微更敞开和多孔,并因此更近似于松质骨。

    图7显示了一个股骨髋部假肢杆30,完全用陶瓷制成,此假肢具有致密的杆状部分32,终止在关节球36中的颈角部分34,以及肩角部分38。如在图7中所示,其肩角部分包含本发明制品的厚层40,它具有含较大孔隙的框架,附着在假肢较致密的部分42上。当此假肢被植入伸展的股骨中,包涂层38有助于骨向其内生长。

    图8显示了一个胫骨托盘50,它具有超高分子量聚乙烯的上板52,此上板具有关节上表面54。此超高分子量聚乙烯板由本发明致密材料制成的板56支撑,板56与向下伸展的支杆58形成一个整体。以板材60的形式显示了本发明的敞口框架材料,它放置在板56底部形成的向下开口的凹槽62中,此框架材料60向下延伸至大约支杆的上端,如64所示,是较厚的一层,有助于在此区域骨向其内生长。

    可借助于任何普通的陶瓷成形技术,制备这种结构的致密部分,如滑泥铸型,带状铸型(tape casting),或者在一种“泡沫胶”的表面包涂和干燥连续的几层滑泥,直至形成一个致密层。干压制,灌注造型和挤压技术也可能是适用的。为了使“未成熟的”致密部分与“未成熟的”低密度部分结合,可通过使用与用于形成低密度部分的滑泥基本类似的组合材料陶瓷滑泥,或者在用于滑泥铸件致密部分时,使用与用于形成致密部分的滑泥基本类似的组合材料陶瓷滑泥。“未成熟的”在此意指陶瓷制品的状态,它已成形并干燥形成了本身的支撑结构,但是还没有从其中除去有机组分。按另一种方式,除了上面列举的材料之外,此致密部分还可以由可再吸收的聚合材料,可再吸收的陶瓷材料或可再吸收的组合材料构成。

    上面的描述集中于完全成形的骨代用品制品,它具有开放性的支撑框架,通常与此支撑框架共连通并包含在此支撑框架内的骨传导性材料,以及在支撑框架与骨传导性材料之间,还具有弹性的,优选地是生物可吸收的聚合物。如果需要,在支撑框架的空隙内,骨传导性材料可不必是连续的。在此,该骨传导性材料可能是颗粒状的,如图5中在22显示的,并且可能是由弹性材料20所携带,或者是包埋在其中。此外,本发明还涉及在图4中所示的实施方案,如上面所述,其中支撑框架的空隙用弹性的,合乎要求地是生物可吸收的材料包涂了,这种被包涂的空隙24敞开在制品的表面。对于此实施方案,还可能在外科手术中用磷酸钙水泥填充这些被包涂的空隙。空隙内的磷酸钙水泥将变硬,使支撑框架与变硬的磷酸钙水泥隔开的弹性材料,能够分散外部负荷对框架产生的作用力。按另一种方式,还可用弹性材料包涂这种开放的支撑框架,而其空隙不被填充。

    参照下面非限制性实施例,可能更容易理解本发明:

    实施例Ⅰ

    通过组合如下成分,并在聚乙烯容器内使用氧化锆介质,借助于球磨研磨彻底地将它们混匀:

    150克部分稳定化的氧化锆粉末(Zirconia Sales America)

    2.25克分散剂(Rohm and Haas,产品D-3021)

    15克粘合剂(Rohn and Hass,产品标志号B-1000)

    0.375克表面活性剂/湿润剂(Air Products SurfynolTM TG)

    0.26克抗发泡剂(Henkel NopcoTM NXZ)

    36ml去离子水

    将每英寸具有10-80个孔隙的网状聚酯-聚亚氨酯泡沫胶片(Stephenson and Lawyer)浸泡于上面的滑泥浆中,反复揉压除去里面的气泡。从滑泥浆中取出泡沫胶,使之沥干多余的滑泥浆。再使此泡沫胶在一对不锈钢挤压滚筒之间通过几次,进一步除去多余的滑泥浆。还通过对它们吹气清洁通道。先在室温下使形成的泡沫胶条干燥,随之以高达100℃的温度在空气中干燥。当此泡沫胶条显示干燥时,再将它们加热,以便热解并除去有机物(粘合剂,分散剂,表面活性剂,抗泡沫剂和网状聚合物泡沫胶),然后在大约1400℃的温度烧结1小时。为上述目的,优选的热循环过程包括,以每分钟2℃的速度使泡沫胶条升温至600℃,在600℃保持温度2小时,然后以每分钟5℃的速度升温至1400℃,在此温度保持1小时。最后以每分钟大约10℃的速度使加热炉冷却至室温。形成的制品是具有大约76%空虚体积的坚硬,重量轻,多孔的氧化锆框架材料,或者氧化锆网状材料。

    然后将此框架材料浸入熔化的石蜡中,立即取出完全沥干,使之在框架结构的表面遗留下一薄层蜡。通过组合并混匀如下成分配制可注入的磷酸钙糊浆:

    29克    磷酸钙(粉末)

    3.5克  聚环氧乙烷粘合剂

    2克     分散剂(DarvanTM C,R.T.Vanderbilt)

    3滴     增稠剂(Rohm and Hass T-5000)

    2滴     抗发泡剂(Henkel NopcoTM NXZ)

    30毫升  去离子水

    将此糊浆注入氧化锆框架材料的空隙中,并使之在空气中60℃干燥。然后将此制品在氮气中1300℃烧结1小时。所形成的产品具有氧化锆和磷酸钙的二种交错的网络,在它们的界面具有间隙。

    将20份50mM的乙酸同1份胶原蛋白混合,并搅拌混匀制成I型胶原蛋白凝胶。对此凝胶加入等体积的溶于稀乙酸中的4%脱乙酰几丁质溶液。将此混合物挤压进入此交错的网络之间的间隙中,干燥后在这些网络之间形成胶原蛋白/脱乙酰几丁质弹性夹层。

    实施例Ⅱ

    重复实施例Ⅰ,不同的是用一种乙醇酸和乳酸的共聚物(Alkermes“Medisorb”85/15 PGA/PLLA)稀糊浆填充界面间隙,此共聚物是在乙酸乙酯中配制的,并同等体积实施例Ⅰ中所指的胶原蛋白凝胶混合。使溶剂蒸发以便在这些网络之间形成弹性夹层。取决于溶液的浓度,可重复进行此过程,以便构成聚合物界面。

    对形成的制品进行了加压应力试验,提供了图6中显示的力-转移曲线A。图6中的曲线B显示出没有加入弹性夹层的相同产品的脆性断裂。

    实施例Ⅲ

    同实施例Ⅰ制备氧化锆框架结构,但没有随后的石蜡包涂。为了提供一种类似于在图5中所显示的制品,以Ⅰ型胶原蛋白悬液制成的糊浆填充其空隙,此胶原蛋白悬液是在50mM的乙酸中,按1份胶原蛋白对20份酸的比例配制成,其中从前体物磷酸四钙(Ca4(PO4)2)和monetite(CaHPO4)长成了钙缺乏的羟基磷灰石结晶(按照TenHuisen等,生物化学材料研究杂志Vol.29,PP.803-810(1995)中所述的方法,此文献在此被引入作为参考)。

    实施例Ⅳ

    如实施例Ⅰ,以25%体积的羟基碳石制备了氧化锆/羟基磷灰石复合材料框架,随后不用蜡包涂。用乙醇酸和乙酸的共聚物(Alkermes“Medisorb”75/25 PLLA/PGA)溶液包涂其支柱,提供大约15mils的包涂厚度。

    用磷酸钙水泥糊浆灌注此制品的空隙,如使用Constantz等所述的方法(Constantz等,SCIENCE,Vol.267(1995),此技术在此被引入作为参考)配制的水泥浆,它包含在磷酸钠溶液中配制的磷酸一钙一水合物,磷酸钙和碳酸钙的混合物。变硬的此水泥浆可提供一种适合移植的生物材料,现在它已被弹性界面的骨架加强了。

    实施例Ⅴ

    通过以在实施例Ⅰ中所述的磷酸钙滑泥浆包涂网状聚酯-聚亚氨酯泡沫胶,制备了一种磷酸钙框架结构。将所形成的泡沫胶条在空气中以高达100℃的温度干燥。干燥之后将此泡沫胶条加热,以便热解和除去有机物,并在氮气中以约1300℃的温度烧结1小时。然后以在二氯甲烷中配制的乳酸和乙醇酸的共聚物(Alkermes“Medisorb”75/25 PLLA/PGA)溶液包涂所形成的磷酸钙框架材料。通过真空干燥法除去溶剂。

    实施例Ⅵ

    如实施例Ⅰ制备一种支撑框架结构,但是使用了氧化锆和羟磷灰石滑泥浆。以在二氯甲烷中配制的乙醇酸和乳酸的共聚物溶液包涂其支柱,并部分地填充其空隙。包涂之后,通过抽真空除去溶剂。

    实施例Ⅶ

    在烧结之前,将如实施例Ⅰ所制备的“未成熟”陶瓷网络结构,用一种含有相同组分氧化锆,粘合剂和氧化锆粉末的滑泥浆湿润,并粘附于一种相同组成的未成熟氧化锆陶瓷材料,此陶瓷材料是借助于传统的陶瓷滑泥铸型法通过烧结制造的,后一种材料模拟了弯曲的皮质骨,而其网络结构模拟了附着的松质骨。然后,用如实施例Ⅱ的乙醇酸和乳酸共聚物包涂其网络部分的支柱。

    尽管已描述了本发明的优选实施方案,但应该理解的是,在不脱离本发明的原理和所附权利要求范围的情况下,可以作出多种改变,应用和改进。

骨代用品.pdf_第1页
第1页 / 共24页
骨代用品.pdf_第2页
第2页 / 共24页
骨代用品.pdf_第3页
第3页 / 共24页
点击查看更多>>
资源描述

《骨代用品.pdf》由会员分享,可在线阅读,更多相关《骨代用品.pdf(24页珍藏版)》请在专利查询网上搜索。

一种可用作骨代用品材料的坚固的多孔制品。该制品含有连续的坚固框架结构,此框架结构具有分隔贯穿整个体积的相互连通空隙的支柱,该制品还可能具有陶瓷的或骨传导性材料,它占据了至少与此框架结构相同的总体积的一部分。一种具有分散该制品内应力作用的弹性材料,或者作为在坚固框架支柱上的涂层,或者置于此框架支柱与陶瓷的或骨传导性骨诱导性材料之间。。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人类生活必需 > 医学或兽医学;卫生学


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1