1、(10)申请公布号 CN 103143342 A(43)申请公布日 2013.06.12CN103143342A*CN103143342A*(21)申请号 201310075481.8(22)申请日 2013.03.08B01J 23/20(2006.01)C02F 1/32(2006.01)C01B 3/04(2006.01)(71)申请人上海交通大学地址 200240 上海市闵行区东川路800号(72)发明人朱申敏 毛琳 张荻 李尧杨庆庆(74)专利代理机构上海科盛知识产权代理有限公司 31225代理人林君如(54) 发明名称棒状五氧化二钽纳米晶/石墨烯复合光催化剂的制备方法(57) 摘要
2、本发明涉及棒状五氧化二钽纳米晶/石墨烯复合光催化剂的制备方法,配置五氧化二钽前驱溶液后,将氧化石墨超声分散于五氧化二钽前驱体溶液中,经过水热反应后再离心过滤并干燥,即制备得到棒状五氧化二钽纳米晶/石墨烯复合光催化剂。与现有技术相比,本发明利用该前驱液在合适的水热条件下取向结晶这一特性,控制了五氧化二钽以棒状的形式在石墨烯上的生长,制备得到棒状五氧化二钽纳米晶/石墨烯复合物,该方法通过对五氧化二钽形貌的控制,得到的取向态五氧化二钽更有利于光生电子空穴的分离,因此该复合光催化剂催化性能得到大幅提高。(51)Int.Cl.权利要求书1页 说明书4页 附图1页(19)中华人民共和国国家知识产权局(12
3、)发明专利申请权利要求书1页 说明书4页 附图1页(10)申请公布号 CN 103143342 ACN 103143342 A1/1页21.棒状五氧化二钽纳米晶/石墨烯复合光催化剂的制备方法,其特征在于,该方法将氧化石墨超声分散于五氧化二钽前驱体溶液中,经过水热反应后再离心过滤并干燥,即制备得到棒状五氧化二钽纳米晶/石墨烯复合光催化剂。2.根据权利要求1所述的棒状五氧化二钽纳米晶/石墨烯复合光催化剂的制备方法,其特征在于,所述的棒状五氧化二钽的前驱体溶液的制备方法包括以下步骤:将五氧化二钽溶于氢氟酸中,然后再向其中依次加入双氧水及氨水,即制备得到水溶性的五氧化二钽前驱体溶液。3.根据权利要求2
4、所述的棒状五氧化二钽纳米晶/石墨烯复合光催化剂的制备方法,其特征在于,所述的五氧化二钽与氢氟酸的比例为0.10.5g/l8ml。4.根据权利要求2所述的棒状五氧化二钽纳米晶/石墨烯复合光催化剂的制备方法,其特征在于,所述的氢氟酸、双氧水、氨水的体积比为18210215。5.根据权利要求1所述的棒状五氧化二钽纳米晶/石墨烯复合光催化剂的制备方法,其特征在于,所述的超声分散是将氧化石墨与棒状五氧化二钽前驱体溶液在200W300W的功率下常温超声1-3h。6.根据权利要求1所述的棒状五氧化二钽纳米晶/石墨烯复合光催化剂的制备方法,其特征在于,所述的水热反应是将分散有氧化石墨的五氧化二钽前驱体溶液置于
5、放入水热釜中,控制温度为100240反应248h。7.根据权利要求1所述的棒状五氧化二钽纳米晶/石墨烯复合光催化剂的制备方法,其特征在于,所述的离心过滤并干燥是将经水热反应的样品滴入离心管中,分别用去离子水和无水乙醇洗涤数次后进行离心分离并过滤,然后置于鼓风干燥箱内60-80干燥2448h。权 利 要 求 书CN 103143342 A1/4页3棒状五氧化二钽纳米晶 / 石墨烯复合光催化剂的制备方法技术领域0001 本发明属于光催化领域,尤其是涉及一种棒状五氧化二钽纳米晶/石墨烯复合光催化剂的制备方法,用于光解水制备氢气或降解有机污染物。背景技术0002 光催化材料是在紫外光或者可见光照射下能
6、够催化分解水、降解有机污染物、杀灭细菌的一种材料。以半导体材料为催化剂,利用太阳能通过光催化及消除污染物或制备清洁新能源成为近年研究的热点。光催化材料发展迅猛,纳米半导体材料更是受到了广泛的关注,比如纳米氧化物TiO2,WO3和Ta2O5,以及纳米硫化物(如CdS)、复合纳米催化剂以及其它掺杂改性材料。0003 五氧化二钽在紫外光下产氢性能较好,是较好的光催化材料之一。五氧化二钽的导带位置较高,这种独特的导带结构有利于五氧化二钽催化还原水制备氢气,此过程甚至不需要助催化剂的作用。但是,同许多催化剂一样,光生电子和空穴极易重新结合,分离效率低,因此催化性能受到限制。最大限度地提高光生电子与空穴的
7、分离效率成为提高五氧化二钽催化性能的关键。0004 为了提高五氧化二钽的光催化性能,众多研究人员致力于通过控制五氧化二钽的形貌来提高其催化性能,Junyuan Duan等人(Hierarchical Nanostructures of Fluorinated and Naked Ta2O5 Single Crystal line Nanorods:Hydrothermal Preparation,Formation Mechanism and Photocatalytic Activity for H2 Production,ChemComm,2012,48,7301-7303(分级结构的氟化
8、Ta2O5及纯Ta2O5单晶纳米棒:制备,形成机理以及光催化制氢活性)发现花状的五氧化二钽拥有比粒状五氧化二钽更好的产氢性能。Xujie Lu等人(Ta2O5 Nanowires:a novel synthetic method and their solar energy utilization,Dalton Trans,2012,41,2,622-627(Ta2O5纳米线:一种新型的合成方法及其太阳能利用研究)证明了五氧化二钽纳米线的光催化作用优于商用粒状五氧化二钽。这些研究都表明,与粒状结构的五氧化二钽相比,取向结构的五氧化二钽纳米晶(比如棒状结构以及花状结构的五氧化二钽)具有更高的比表
9、面积以及反应活性点,更重要的是,这种独特的一维取向结构更有利于光生电子的转移,因此电荷分离效率更高。0005 近年来的研究发现,将半导体光催化剂制备在石墨烯的片层表面,是另外一种有效提高光催化性能的方法,石墨烯较大的比表面积使其可以作为优良催化剂的载体,吸附更多催化剂颗粒,从而使催化剂的活性和选择性大幅提高,为工业生产带来巨大的经济效益。由于石墨烯的稳定结构,它用作催化剂载体时比较稳定,可以长时间使用。此外,石墨烯的优良导电性使得光生电子和空穴能够及时分离,从而大大提高复合物的光催化效率。发明内容0006 本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种制备得到棒状五氧化二钽纳米晶/石
10、墨烯复合物,致力于进一步提高五氧化二钽的光生电子、空穴分离说 明 书CN 103143342 A2/4页4效率,从而提高其催化性能。0007 五氧化二钽纳米颗粒/石墨烯复合光催化剂利用了石墨烯的平面结构以及高导电性等性能,有效地转移光生电子,提高了光催化性能,在其基础上,本发明通过改变与石墨烯复合的五氧化二钽的形貌来更大限度地提高催化剂的催化性能。首次将一维五氧化二钽棒状光催化剂与二维平面状石墨烯复合,成功制备了棒状结构Ta2O5/石墨烯复合物。0008 本发明的目的可以通过以下技术方案来实现:0009 棒状五氧化二钽纳米晶/石墨烯复合光催化剂的制备方法,将氧化石墨超声分散于五氧化二钽前驱体溶
11、液中,经过水热反应后再离心过滤并干燥,即制备得到棒状五氧化二钽纳米晶/石墨烯复合光催化剂。0010 所述的棒状五氧化二钽的前驱体溶液的制备方法包括以下步骤:将五氧化二钽溶于氢氟酸中,然后再向其中依次加入双氧水及氨水,即制备得到水溶性的五氧化二钽前驱体溶液。0011 所述的五氧化二钽与氢氟酸的比例为0.10.5g/l8ml。0012 所述的氢氟酸、氨水、双氧水的体积比为18210215。0013 所述的超声分散是将氧化石墨与棒状五氧化二钽前驱体溶液在200W300W的功率下常温超声1-3h。0014 所述的水热反应是将分散有氧化石墨的五氧化二钽前驱体溶液置于放入水热釜中,控制温度为100240反
12、应248h。0015 所述的离心过滤并干燥是将经水热反应的样品滴入离心管中,分别用去离子水和无水乙醇洗涤数次后进行离心分离并过滤,然后置于鼓风干燥箱内60-80干燥2448h。0016 与现有技术相比,本发明首次制备得到棒状五氧化二钽与平面状石墨烯(一维与二维相结合)的复合物,致力于进一步提高棒状五氧化二钽的催化性能。在制备工艺上,本发明得到五氧化二钽前驱体溶液后并不加热形成白色粉末,因此不用加双氧水将此白色粉末重新溶解,而是直接与氧化石墨烯超声混合,在水热过程中由于某个特定晶面的表面能比较高,五氧化二钽倾向于沿此晶面取向生长,同时氧化石墨烯得到还原,最后形成棒状五氧化二钽纳米晶/石墨烯复合物
13、。附图说明0017 图1为实施例1制备得到的棒状五氧化二钽纳米晶/石墨烯复合光催化剂的扫描电镜图片。具体实施方式0018 棒状五氧化二钽纳米晶/石墨烯复合光催化剂在制备时,包括以下步骤:0019 首先将五氧化二钽溶于氢氟酸中,然后再向其中依次加入氨水及双氧水,五氧化二钽与氢氟酸的比例为0.10.5g/l8ml,氢氟酸、氨水、双氧水的体积比为18210215,制备得到水溶性的五氧化二钽前驱体溶液。0020 将氧化石墨与棒状五氧化二钽前驱体溶液在200W300W的功率下常温超声1-3h,再置于水热釜中,控制温度为100240反应248h,然后分别用去离子水和无水乙醇洗涤数次后进行离心分离并过滤,然
14、后置于鼓风干燥箱内60-80干燥2448h,即制说 明 书CN 103143342 A3/4页5备得到棒状五氧化二钽纳米晶/石墨烯复合光催化剂。0021 制备得到的复合光催化剂的催化活性通过光解水制氢实验得到验证:采用氙灯作为光源,用紫外光滤波片滤去可见光,称量30mg催化剂,加入75ml煮沸的水中,以甲醇为牺牲剂,打开氙灯,间隔1h取样记录。0022 下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。0023 实施例10024 棒状五氧化二钽纳米晶/石墨烯复合光催化剂在制备时,包括以下步骤:
15、0025 第一步,棒状五氧化二钽/石墨烯复合物的前躯体溶液配置过程如下:将0.1g五氧化二钽溶于1ml氢氟酸,之后在该溶液中先加入2ml双氧水,再加入2ml氨水,制备得到水溶性的五氧化二钽前驱体溶液,加入0.2g氧化石墨烯搅拌均匀。0026 第二步,将得到的溶液放入超声仪器,200W的功率下常温超声1h。0027 第三步,将复合物前驱液放入水热釜中,烘箱内100条件下水热反应6h。0028 第四步,水热反应后得到的复合物用去离子水和乙醇离心分离数次后在鼓风干燥箱内60烘24h。0029 通过XRD、SEM、TGA等测试分析,制备得到的棒状五氧化二钽纳米晶/石墨烯复合光催化剂中五氧化二钽含量为7
16、5,五氧化二钽的直径为2-6nm,长150nm,比表面积为123m2/g。该催化剂的制氢性能是五氧化二钽纳米颗粒/石墨烯复合催化剂的1.8倍,其中制备棒状五氧化二钽纳米晶/石墨烯复合光催化剂的扫描电镜图片如图1所示。0030 实施例20031 棒状五氧化二钽纳米晶/石墨烯复合光催化剂在制备时,包括以下步骤:0032 第一步,棒状五氧化二钽/石墨烯复合物的前躯体溶液配置过程如下:将0.1g五氧化二钽溶于5ml氢氟酸,之后在该溶液中先加入3ml双氧水,离心分离后加入3ml氨水,加入准备好的氧化石墨烯悬浊液搅拌均匀。0033 第二步,将得到的混合溶液放入超声仪器,250W的功率下常温超声2h。003
17、4 第三步,将上述溶液放入水热釜中,烘箱内240条件下水热反应12h。0035 第四步,水热反应后得到的复合物用去离子水和乙醇离心分离数次后在鼓风干燥箱内60烘48h。0036 通过XRD、SEM、TGA等测试分析,制备得到的棒状五氧化二钽纳米晶/石墨烯复合光催化剂中五氧化二钽含量为50,五氧化二钽的直径为10-15nm,长50nm,比表面积为185m2/g。该催化剂的制氢性能是五氧化二钽纳米颗粒/石墨烯复合催化剂的2倍。0037 实施例30038 棒状五氧化二钽纳米晶/石墨烯复合光催化剂在制备时,包括以下步骤:0039 第一步,棒状五氧化二钽/石墨烯复合物的前躯体溶液配置过程如下:将0.5g
18、五氧化二钽溶于8ml氢氟酸,之后在该溶液中先加入5ml氨水,再加入10ml双氧水,加入准备好的氧化石墨烯悬浊液搅拌均匀。0040 第二步,将上述溶液放入超声仪器,300W的功率下常温超声3h。0041 第三步,将混合溶液放入水热釜中,烘箱内240条件下水热反应24h。说 明 书CN 103143342 A4/4页60042 第四步,水热反应后得到的复合物用去离子水和乙醇离心分离数次后在鼓风干燥箱内60烘24h。0043 通过XRD、SEM、TGA等测试分析,制备得到的棒状五氧化二钽纳米晶/石墨烯复合光催化剂中五氧化二钽含量为90,五氧化二钽的直径为20-30nm,长50nm,比表面积为70m2/g。该催化剂的制氢性能是五氧化二钽纳米颗粒/石墨烯复合催化剂的1.4倍。说 明 书CN 103143342 A1/1页7图1说 明 书 附 图CN 103143342 A
copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1